Uniqueness and Regularity for the Navier-Stokes-Cahn-Hilliard System

The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.

[1]  E. Feireisl,et al.  On a diffuse interface model for a two-phase flow of compressible viscous fluids , 2008 .

[2]  L. Antanovskii A phase field model of capillarity , 1995 .

[3]  Franck Boyer,et al.  Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .

[4]  Harald Garcke,et al.  On an Incompressible Navier-Stokes/Cahn-Hilliard System with Degenerate Mobility , 2012, 1210.1011.

[5]  Paul Steinmann,et al.  Natural element analysis of the Cahn–Hilliard phase-field model , 2010 .

[6]  Helmut Abels,et al.  On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities , 2009 .

[7]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[8]  Abner J. Salgado,et al.  A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines , 2013 .

[9]  Alain Miranville,et al.  Cahn–Hilliard–Navier–Stokes systems with moving contact lines , 2016 .

[10]  Ciprian G. Gal,et al.  Global solutions for the 2D NS–CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility , 2012 .

[11]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[12]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[13]  Min Gao,et al.  A gradient stable scheme for a phase field model for the moving contact line problem , 2012, J. Comput. Phys..

[14]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[15]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[16]  V. Starovoitov Model of the motion of a two-component liquid with allowance of capillary forces , 1994 .

[17]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[18]  Harald Garcke,et al.  Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities , 2011, Journal of Mathematical Fluid Mechanics.

[19]  Franck Boyer,et al.  Nonhomogeneous Cahn–Hilliard fluids , 2001 .

[20]  Coarse-grained Description of Thermo-capillary Ow Typeset Using Revt E X 1 , 2007 .

[21]  Ciprian G. Gal,et al.  Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D , 2010 .

[22]  Helmut Abels,et al.  Existence of Weak Solutions for a Diffuse Interface Model for Viscous, Incompressible Fluids with General Densities , 2009 .

[23]  Helmut Abels,et al.  Strong Well-posedness of a Diffuse Interface Model for a Viscous, Quasi-incompressible Two-phase Flow , 2011, SIAM J. Math. Anal..

[24]  David Jasnow,et al.  Coarse‐grained description of thermo‐capillary flow , 1996, patt-sol/9601004.

[25]  M. Grasselli,et al.  Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system , 2011 .

[26]  C. Simader,et al.  Direct methods in the theory of elliptic equations , 2012 .

[27]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[28]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  T. Tachim Medjo,et al.  On a Regularized Family of Models for Homogeneous Incompressible Two-Phase Flows , 2014, J. Nonlinear Sci..

[30]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[31]  Viorel Barbu,et al.  Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .

[32]  David Jacqmin,et al.  An energy approach to the continuum surface tension method , 1996 .

[33]  H. Abels,et al.  Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows , 2013, 1302.3107.

[34]  Yi Shi,et al.  A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems , 2012, J. Comput. Phys..

[35]  Ciprian G. Gal,et al.  Trajectory attractors for binary fluid mixtures in 3D , 2010 .

[36]  E. Rocca,et al.  Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids , 2014, 1406.1635.

[37]  K. Lam,et al.  Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis , 2017, European Journal of Applied Mathematics.

[38]  Ciprian G. Gal,et al.  LONGTIME BEHAVIOR FOR A MODEL OF HOMOGENEOUS INCOMPRESSIBLE TWO-PHASE FLOWS , 2010 .

[39]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[40]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[41]  M. Grasselli,et al.  Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials , 2012, 1201.6303.

[42]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[43]  Elisabetta Rocca,et al.  On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids , 2014, 1401.3244.

[44]  Hao Wu,et al.  Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids , 2009 .

[45]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[46]  D. Grandi,et al.  Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids , 2010, 1012.2521.

[47]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[48]  Franck Boyer,et al.  Hierarchy of consistent n-component Cahn–Hilliard systems , 2014 .

[49]  E. Titi,et al.  A tropical atmosphere model with moisture: global well-posedness and relaxation limit , 2015, 1507.05231.

[50]  A. Miranville The Cahn–Hilliard equation and some of its variants , 2017 .

[51]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[52]  A. Miranville,et al.  On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures , 2014 .

[53]  Christian Kahle,et al.  An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system , 2013, J. Comput. Phys..

[54]  Yinnian He,et al.  Analysis of finite element approximations of a phase field model for two-phase fluids , 2006, Math. Comput..

[55]  David Kay,et al.  Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .

[56]  Kai Bao,et al.  3D Adaptive Finite Element Method for a Phase Field Model for the Moving Contact Line Problems , 2013 .

[57]  Boo Cheong Khoo,et al.  An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model , 2007, J. Comput. Phys..

[58]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  R. Temam,et al.  On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials , 2016 .

[60]  Maurizio Grasselli,et al.  The Cahn–Hilliard–Hele–Shaw system with singular potential , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[61]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[62]  Helmut Abels,et al.  Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy , 2007 .

[63]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[64]  Alain Miranville,et al.  The Cahn–Hilliard–Oono equation with singular potential , 2017 .

[65]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[66]  Xiaofeng Yang,et al.  Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows , 2010 .

[67]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[68]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .