Wavelet solution of variable order pseudodifferential equations

Sobolev spaces Hm(x)(I) of variable order 0<m(x)<1 on an interval I⊂ℝ arise as domains of Dirichlet forms for certain quadratic, pure jump Feller processes Xt∈ℝ with unbounded, state-dependent intensity of small jumps. For spline wavelets with complementary boundary conditions, we establish multilevel norm equivalences in Hm(x)(I) and prove preconditioning and wavelet matrix compression results for the variable order pseudodifferential generators A of X.Sufficient conditions on A to satisfy a Gårding inequality in Hm(x)(I) and time-analyticity of the semigroup Tt associated with the Feller process Xt are established.As application, wavelet-based algorithms of log-linear complexity are obtained for the valuation of contingent claims on pure jump Feller-Lévy processes Xt with state-dependent jump intensity by numerical solution of the corresponding Kolmogoroff equations.

[1]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[2]  Hitoshi Kumanogō,et al.  Pseudo-differential operators , 1982 .

[3]  H. Helson Harmonic Analysis , 1983 .

[4]  Walter Hoh Pseudo differential operators with negative definite symbols of variable order , 2000 .

[5]  N. Jacob Characteristic Functions and Symbols in the Theory of Feller Processes , 1998 .

[6]  Miriam Primbs Stabile biortogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[7]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[8]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[9]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..

[10]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2005, Numerische Mathematik.

[11]  Hans-Gerd Leopold On Function Spaces of Variable Order of Differentiation , 1991 .

[12]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[13]  Christoph Schwab,et al.  On Kolmogorov equations for anisotropic multivariate Lévy processes , 2010, Finance Stochastics.

[14]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[15]  Christoph Schwab,et al.  Exponential convergence of hp quadrature for integral operators with Gevrey kernels , 2009 .

[16]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups , 2001 .

[17]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[18]  Christoph Winter,et al.  Wavelet Galerkin schemes for option pricing in multidimensional Lévy models , 2009 .

[19]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[20]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[21]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[22]  Christoph Schwab,et al.  Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..

[23]  P. Courrège Sur la forme intégro-différentielle des opérateurs de $C^\infty _k$ dans $C$ satisfaisant au principe du maximum , 1966 .

[24]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[25]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[26]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[27]  Richard F. Bass,et al.  Uniqueness in law for pure jump Markov processes , 1988 .

[28]  Vom Fachbereich Mathematik,et al.  Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[29]  Karsten Urban,et al.  Wavelet Methods for Elliptic Partial Differential Equations , 2008 .

[30]  Koji Kikuchi,et al.  On Markov process generated by pseudodifferential operator of variable order , 1997 .

[31]  Christoph Schwab,et al.  Linear Complexity Solution of Parabolic Integro-differential Equations , 2006, Numerische Mathematik.

[32]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[33]  Tammo Jan Dijkema,et al.  Adaptive tensor product wavelet methods for solving PDEs , 2009 .

[34]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[35]  Christoph Schwab,et al.  Wavelet Discretizations of Parabolic Integrodifferential Equations , 2003, SIAM J. Numer. Anal..

[36]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[37]  Walter Schachermayer,et al.  The variance-optimal martingale measure for continuous processes , 1996 .

[38]  Dominik Schötzau,et al.  hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .