Authentication Mechanism for IoT Device in Micro Grid Environments

Recently there is much interest in how to implement IoT/IoE-based Micro Grids (MG). But, privacy and security concerns inhibit the fast adaption of IoT technology for many applications. A number of authentication protocols that address these concerns have been proposed but real-world solutions that are secure, maintain low communication cost. We present a novel authentication protocol, which offers a high level of security through the combination of a random key scheme with a strong cryptography. The protocol is applicable to resource, power and computationally constraint platforms such as IoT devices. Our investigation shows that it can provide mutual authentication, untraceability, forward and backward security as well as resistance to replay, denial-of-service and man-in-the-middle attacks, while retaining a competitive communication cost. The protocol has been integrated into the device authentication protocol, which assures low implementation cost.