Free energy difference in indolicidin attraction to eukaryotic and prokaryotic model cell membranes.

We analyzed the thermodynamic and structural determinants of indolicidin interactions with eukaryotic and prokaryotic cell membranes using a series of atomistically detailed molecular dynamics simulations. We used quartz-supported bilayers with two different compositions of zwitterionic and anionic phospholipids as model eukaryotic and prokaryotic cell membranes. Indolicidin was preferentially attracted to the model prokaryotic cell membrane in contrast to the weak adsorption on the eukaryotic membrane. The nature of the indolicidin surface adsorption depended on an electrostatic guiding component, an attractive enthalpic component derived from van der Waals interactions, and a balance between entropic factors related to peptide confinement at the interface and counterion release from the bilayer surface. Thus, whereas we attributed the specificity of the indolicidin/membrane interaction to electrostatics, these interactions were not the sole contributors to the free energy of adsorption. Instead, a balance between an attractive van der Waals enthalpic component and a repulsive entropic component determined the overall strength of indolicidin adsorption.

[1]  Alexander D. MacKerell,et al.  Development of an empirical force field for silica. Application to the quartz-water interface. , 2006, The journal of physical chemistry. B.

[2]  A. Wallqvist,et al.  Structure and dynamics of end-to-end loop formation of the penta-peptide Cys-Ala-Gly-Gln-Trp in implicit solvents. , 2009, The journal of physical chemistry. B.

[3]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[4]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[5]  Zhan Chen,et al.  SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. , 2006, Biochimica et biophysica acta.

[6]  A. Rammohan,et al.  Atomistic simulations of the interaction between lipid bilayers and substrates , 2007 .

[7]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[8]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[9]  R. Hancock,et al.  Interaction of Cationic Antimicrobial Peptides with Model Membranes* , 2001, The Journal of Biological Chemistry.

[10]  Bert L. de Groot,et al.  Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments , 2007, European Biophysics Journal.

[11]  I. Tolokh,et al.  Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[13]  Yung Chang,et al.  Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. , 2009, Journal of molecular biology.

[14]  R. Epand,et al.  Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. , 2008, Journal of structural biology.

[15]  Wayne L. Smith,et al.  Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. , 1992, The Journal of biological chemistry.

[16]  I. Tolokh,et al.  Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[18]  Y. Kaznessis,et al.  Free energy profile of the interaction between a monomer or a dimer of protegrin-1 in a specific binding orientation and a model lipid bilayer. , 2010, The journal of physical chemistry. B.

[19]  Anthony K. Felts,et al.  Temperature weighted histogram analysis method, replica exchange, and transition paths. , 2005, The journal of physical chemistry. B.

[20]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[21]  Gerhard Hummer,et al.  Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. , 2004, Biophysical journal.

[22]  T. Ha,et al.  Interaction of Indolicidin with Model Lipid Bilayer: Quartz Crystal Microbalance and Atomic Force Microscopy Study , 2000 .

[23]  H. Scheraga,et al.  Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides , 1994 .

[24]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[25]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[26]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[27]  H. Khandelia,et al.  Cation–π Interactions Stabilize the Structure of the Antimicrobial Peptide Indolicidin near Membranes: Molecular Dynamics Simulations , 2007 .

[28]  Anders Wallqvist,et al.  Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study. , 2011, The journal of physical chemistry. B.

[29]  C. Yip,et al.  Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. , 2006, Journal of structural biology.

[30]  H. Vogel,et al.  Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. , 2008, Biochimica et biophysica acta.

[31]  R. Hancock,et al.  Mode of Action of the Antimicrobial Peptide Indolicidin* , 1996, The Journal of Biological Chemistry.

[32]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[33]  R. Hancock,et al.  Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. , 2000, Biochemistry.

[34]  M. Berkowitz,et al.  Dielectric constant of water at high electric fields: Molecular dynamics study , 1999 .

[35]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[36]  C. Yip,et al.  Molecular dynamics simulations of indolicidin association with model lipid bilayers. , 2007, Biophysical journal.

[37]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[38]  S H White,et al.  Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. , 1997, Biophysical journal.

[39]  A. Wallqvist,et al.  On the proper calculation of electrostatic interactions in solid-supported bilayer systems. , 2011, The Journal of chemical physics.

[40]  Zhan Chen,et al.  Dependence of antimicrobial selectivity and potency on oligomer structure investigated using substrate supported lipid bilayers and sum frequency generation vibrational spectroscopy. , 2009, Analytical chemistry.

[41]  S. Dodd,et al.  Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. , 2000, Biophysical journal.

[42]  R. Faller,et al.  Interactions of lipid bilayers with supports: a coarse-grained molecular simulation study. , 2008, The journal of physical chemistry. B.

[43]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[44]  S. Feller,et al.  Structure and dynamics of a fluid phase bilayer on a solid support as observed by a molecular dynamics computer simulation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[45]  F. Separovic,et al.  Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. , 2007, Biophysical journal.