The tuning of tuning: How adaptation influences single cell information transfer

Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. Recent work argues that the formation of sensory representations are cell-type specific, as excitatory and inhibitory neurons use complementary information available in spike trains to represent sensory stimuli. Here, by measuring the mutual information between synaptic input and spike trains, we show that inhibitory and excitatory neurons in the barrel cortex transfer information differently: excitatory neurons show strong threshold adaptation and a reduction of intracellular information transfer with increasing firing rates. Inhibitory neurons, on the other hand, show threshold behaviour that facilitates broadband information transfer. We propose that cell-type specific intracellular information transfer is the rate-limiting step for neuronal communication across synaptically coupled networks. Ultimately, at high firing rates, the reduction of information transfer by excitatory neurons and its facilitation by inhibitory neurons together provides a mechanism for sparse coding and information compression in cortical networks.

[1]  Heiko J. Luhmann,et al.  High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons , 2015, PLoS Comput. Biol..

[2]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[3]  Joël Tabak,et al.  Spike-Frequency Adaptation , 2014, Encyclopedia of Computational Neuroscience.

[4]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[5]  A. Keller,et al.  Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex. , 2011, Journal of neurophysiology.

[6]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[7]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[8]  Maria V. Sanchez-Vives,et al.  Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. , 2008, Cerebral cortex.

[9]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[10]  Robert M. Gray,et al.  Entropy and Information , 1990 .

[11]  Nicholas A. Steinmetz,et al.  Diverse coupling of neurons to populations in sensory cortex , 2015, Nature.

[12]  José Luis Peña,et al.  Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo , 2014, PLoS Comput. Biol..

[13]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[14]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[15]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[16]  Christian K. Machens,et al.  Efficient codes and balanced networks , 2016, Nature Neuroscience.

[17]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[18]  J. Christie,et al.  Distinct Kv Channel Subtypes Contribute to Differences in Spike Signaling Properties in the Axon Initial Segment and Presynaptic Boutons of Cerebellar Interneurons , 2014, The Journal of Neuroscience.

[19]  Guangying K. Wu,et al.  From elementary synaptic circuits to information processing in primary auditory cortex , 2011, Neuroscience & Biobehavioral Reviews.

[20]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[21]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[22]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[23]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[24]  G A Gutman,et al.  Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. , 1994, Molecular pharmacology.

[25]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[26]  Guangying K. Wu,et al.  Lateral Sharpening of Cortical Frequency Tuning by Approximately Balanced Inhibition , 2008, Neuron.

[27]  V. Parmon,et al.  Entropy and Information , 2009 .

[28]  Chao Huang,et al.  Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding , 2016, PLoS Comput. Biol..

[29]  Fleur Zeldenrust,et al.  Information transfer and recovery for the sense of touch , 2020, bioRxiv.

[30]  A. Keller,et al.  Somatosensory Response Properties of Excitatory and Inhibitory Neurons in Rat 1 Motor Cortex 2 3 , 2011 .

[31]  Bertrand Fontaine,et al.  Fitting Neuron Models to Spike Trains , 2011, Front. Neurosci..

[32]  Boris S. Gutkin,et al.  Estimating the Information Extracted by a Single Spiking Neuron from a Continuous Input Time Series , 2017, Front. Comput. Neurosci..

[33]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[34]  J. Christie,et al.  Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons , 2016, Neuron.

[35]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[36]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[37]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[39]  Arianna Maffei,et al.  GABAergic synapses: their plasticity and role in sensory cortex , 2014, Front. Cell. Neurosci..

[40]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[41]  T. Celikel,et al.  A databank for intracellular electrophysiological mapping of the adult somatosensory cortex , 2018, bioRxiv.

[42]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[43]  Wulfram Gerstner,et al.  How Good Are Neuron Models? , 2009, Science.

[44]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[45]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[46]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Denéve,et al.  Information transmission with spiking Bayesian neurons , 2008 .

[48]  C. Blakemore,et al.  Effects of bicuculline on functions of inhibition in visual cortex , 1974, Nature.

[49]  Fleur Zeldenrust,et al.  Efficient and robust coding in heterogeneous recurrent networks , 2019, bioRxiv.

[50]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[51]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[52]  Subutai Ahmad,et al.  Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex , 2015, Front. Neural Circuits.

[53]  W. Senn,et al.  Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. , 2003, Journal of neurophysiology.

[54]  Greg J. Stuart,et al.  Signal Processing in the Axon Initial Segment , 2012, Neuron.

[55]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[56]  Christian K. Machens,et al.  Predictive Coding of Dynamical Variables in Balanced Spiking Networks , 2013, PLoS Comput. Biol..

[57]  E. Arabzadeh,et al.  Diverse tuning underlies sparse activity in layer 2/3 vibrissal cortex of awake mice , 2019, The Journal of physiology.

[58]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[59]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[60]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[61]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[62]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.