Hardware simulation of semi-Markov and related processes: Part I: a versatile generator

Abstract After a brief review and classification of the known generators, this part I of 2 parts paper investigates carefully a new programmable generator of general ordinary renewal processes in discrete time. The generator is based on the concept of failure rate and its implementation is completely digital. The effects of time and amplitude quantization are analyzed in detail. Statistical tests, checking distribution and independence, are partly developed and then applied to numerous examples; results are satisfactory. The distributions of the generated random time intervals are not truncated. Thereafter the generator of renewal processes is extended to allow the hardware simulation of general semi-Markov processes in discrete time. (The generation of related processes will be considered in part II, together with applications.)

[1]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[2]  Étude expérimentale des passages par zéro ou par un seuil de fonctions aléatoires , 1970 .

[3]  Dimitris G. Maritsas,et al.  Design Criteria for a Generator of Repeatable Non-Poisson Sequences of Pseudorandom Pulses , 1970, IEEE Transactions on Computers.

[4]  N. Wilde THE GENERATION OF POISSON TIME DISTRIBUTED RANDOM PULSES , 1962 .

[5]  R. Pyke Markov Renewal Processes with Finitely Many States , 1961 .

[6]  Ronald W. Schafer,et al.  A fast method of generating digital random numbers , 1970, Bell Syst. Tech. J..

[7]  T. Mimaki Zero‐crossing intervals of Gaussian processes , 1973 .

[8]  J. Hunter On the moments of Markov renewal processes , 1969, Advances in Applied Probability.

[9]  W. Feller On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions , 1948 .

[10]  George Marsaglia,et al.  Uniform Random Number Generators , 1965, JACM.

[11]  Walter L. Smith,et al.  Regenerative stochastic processes , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  George M. Dillard,et al.  An Electronic Generator of Random Numbers , 1962, IRE Trans. Electron. Comput..

[13]  Jos H. A. de Smit,et al.  Semi-Markoff-Prozesse mit endlich vielen Zuständen , 1970 .

[14]  P. Schmid,et al.  On the Kolmogorov and Smirnov Limit Theorems for Discontinuous Distribution Functions , 1958 .

[15]  Ronald Pyke,et al.  Limit Theorems for Markov Renewal Processes , 1964 .

[16]  D. Darling The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  Ronald A. Howard,et al.  Dynamic Probabilistic Systems , 1971 .

[19]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[20]  Lawrence R. Rabiner,et al.  A digital hardware realization of a random number generator , 1972 .

[21]  M Skopitz,et al.  Random time-interval generator. , 1974, IEEE transactions on bio-medical engineering.

[22]  A. D. Soloviev Theory of aging elements , 1967 .

[23]  Martin Greenberger,et al.  Method in randomness , 1965, CACM.

[24]  Dimitris G. Maritsas A High Speed and Accuracy Digital Gaussian Generator of Pseudorandom Numbers , 1973, IEEE Transactions on Computers.

[25]  Ian F. Blake,et al.  Level-crossing problems for random processes , 1973, IEEE Trans. Inf. Theory.

[26]  T. E. Hull,et al.  Random Number Generators , 1962 .

[27]  R. M. Holford Pseudo-Random Pulses for Calibration of Nuclear Instruments , 1969 .

[28]  G. E. Noether Note on the kolmogorov statistic in the discrete case , 1963 .

[29]  A. Birolini,et al.  Some Applications of Regenerative Stochastic Processes to Reliability TheoryߞPart One: Tutorial Introduction , 1974 .

[30]  W. L. Smith Remarks on the paper ‘Regenerative stochastic processes’ , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  Dimitris G. Maritsas,et al.  A Case Study of a Versatile Generator of Repeatable Non-Poisson Sequences of Pseudorandom Pulses , 1970, IEEE Transactions on Computers.

[32]  R. Pyke,et al.  The Existence and Uniqueness of Stationary Measures for Markov Renewal Processes , 1966 .

[33]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[34]  Samuel Gorenstein,et al.  Testing a random number generator , 1967, CACM.

[35]  H.F. Murry A General Approach for Generating Natural Random Variables , 1970, IEEE Transactions on Computers.

[36]  Marvin Zelen,et al.  Mathematical Theory of Reliability , 1965 .

[37]  E. Çinlar Markov renewal theory , 1969, Advances in Applied Probability.

[38]  G White The generation of random-time pulses at an accurately known mean rate and having a nearly perfect poisson distribution , 1964 .

[39]  L. H. Miller Table of Percentage Points of Kolmogorov Statistics , 1956 .

[40]  Z. Birnbaum Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size , 1952 .

[41]  R. Pyke Markov renewal processes: Definitions and preliminary properties , 1961 .

[42]  J. Hanby,et al.  Random Pulse Train Generator with Linear Voltage Control of Average Rate , 1971 .

[43]  A. Kolmogoroff Confidence Limits for an Unknown Distribution Function , 1941 .

[44]  A. Birolini Some Applications of Regenerative Stochastic Processes to Reliability TheoryߞPart Two: Reliability and Availability of 2-Item Redundant Systems , 1975, IEEE Transactions on Reliability.

[45]  S. Rice Mathematical analysis of random noise , 1944 .

[46]  Kurt Müller Simulation von Büschelgeräuschen , 1967 .

[47]  D O Walter,et al.  An adjustable random-pulse generator. , 1970, IEEE transactions on bio-medical engineering.

[48]  Walter L. Smith Renewal Theory and its Ramifications , 1958 .

[49]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[50]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[51]  John S. Sobolewski,et al.  Pseudonoise with Arbitrary Amplitude Distribution--Part I: Theory , 1972, IEEE Transactions on Computers.

[52]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[53]  Dimitris G. Maritsas,et al.  Buffer Length for Erlang Input and Constant Removal Rate , 1970, IEEE Transactions on Computers.

[54]  W. G. Cochran The $\chi^2$ Test of Goodness of Fit , 1952 .

[55]  A random pulse generator , 1966 .