Optimal bandwidths for kernel density estimators of functions of observations
暂无分享,去创建一个
[1] P. Robinson,et al. Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series , 1989 .
[2] P. Robinson. ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .
[3] Thomas M. Stoker,et al. Semiparametric Estimation of Index Coefficients , 1989 .
[4] Alan J. Lee,et al. U-Statistics: Theory and Practice , 1990 .
[5] M. C. Jones,et al. On optimal data-based bandwidth selection in kernel density estimation , 1991 .
[6] M. Woodroofe. On Choosing a Delta-Sequence , 1970 .
[7] Tiee-Jian Wu,et al. Root n Bandwidth Selectors for Kernel Estimation of Density Derivatives , 1997 .
[8] Thomas M. Stoker,et al. Optimal bandwidth choice for density-weighted averages , 1996 .
[9] S. Sheather,et al. A Data Based Algorithm for Choosing the Window Width when Estimating the Integral of f2(x). , 1985 .
[10] M. C. Jones,et al. A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .
[11] Shean-Tsong Chiu. An automatic bandwidth selector for kernel density estimation , 1992 .
[12] Martin L. Hazelton. Bandwidth Selection for Local Density Estimators , 1996 .
[13] Shean-Tsong Chiu,et al. Bandwidth selection for kernel density estimation , 1991 .
[14] T. P. Hettmansperger,et al. Data-based bandwidth selection for kernel estimators of the integral of f2(x) , 1994 .
[15] Joris Pinkse,et al. Spatial Price Competition: A Semiparametric Approach , 2002 .
[16] Edward W. Frees,et al. Estimating Densities of Functions of Observations , 1994 .