Optimal bandwidths for kernel density estimators of functions of observations

We derive optimal bandwidths for kernel density estimators of functions of observations proposed in Frees (J. Amer. Statist. Assoc. 89 (1994) 517-525). Our criteria are, respectively, the minimization of the asymptotic mean squared error and of the asymptotic mean integrated squared error of the estimators.

[1]  P. Robinson,et al.  Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series , 1989 .

[2]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[3]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[4]  Alan J. Lee,et al.  U-Statistics: Theory and Practice , 1990 .

[5]  M. C. Jones,et al.  On optimal data-based bandwidth selection in kernel density estimation , 1991 .

[6]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[7]  Tiee-Jian Wu,et al.  Root n Bandwidth Selectors for Kernel Estimation of Density Derivatives , 1997 .

[8]  Thomas M. Stoker,et al.  Optimal bandwidth choice for density-weighted averages , 1996 .

[9]  S. Sheather,et al.  A Data Based Algorithm for Choosing the Window Width when Estimating the Integral of f2(x). , 1985 .

[10]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[11]  Shean-Tsong Chiu An automatic bandwidth selector for kernel density estimation , 1992 .

[12]  Martin L. Hazelton Bandwidth Selection for Local Density Estimators , 1996 .

[13]  Shean-Tsong Chiu,et al.  Bandwidth selection for kernel density estimation , 1991 .

[14]  T. P. Hettmansperger,et al.  Data-based bandwidth selection for kernel estimators of the integral of f2(x) , 1994 .

[15]  Joris Pinkse,et al.  Spatial Price Competition: A Semiparametric Approach , 2002 .

[16]  Edward W. Frees,et al.  Estimating Densities of Functions of Observations , 1994 .