TiOxNy Modified TiO2 Powders Prepared by Plasma Enhanced Atomic Layer Deposition for Highly Visible Light Photocatalysis

[1]  Xiaoqin Yan,et al.  The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification , 2017 .

[2]  H. Cui,et al.  Porous TiB2-TiC/TiO2 heterostructures: Synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls , 2017 .

[3]  Xu Qian,et al.  Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering , 2017, Scientific Reports.

[4]  D. Geng,et al.  Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology , 2017 .

[5]  Seth B. Darling,et al.  Conformal Nitrogen‐Doped TiO2 Photocatalytic Coatings for Sunlight‐Activated Membranes , 2017 .

[6]  I. Parkin,et al.  On the apparent visible-light and enhanced UV-light photocatalytic activity of nitrogen-doped TiO2 thin films , 2017 .

[7]  N. H. Luong,et al.  Structure and Magnetic Properties of Nanocrystalline Fe55Pd45 Processed by Sonoelectrodeposition , 2017, Journal of Electronic Materials.

[8]  Aidong Li,et al.  ZnO/ZnS Core-Shell Nanowires Arrays on Ni Foam Prepared by Atomic Layer Deposition for High Performance Supercapacitors , 2017 .

[9]  Wang Jingyu,et al.  Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity , 2016 .

[10]  J. Elam,et al.  Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis , 2016 .

[11]  Xiangbo Meng,et al.  Atomic Layer Deposition of LixAlyS Solid‐State Electrolytes for Stabilizing Lithium‐Metal Anodes , 2016 .

[12]  John Wang,et al.  Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage , 2016, Advanced science.

[13]  H. Alshareef,et al.  Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage , 2016 .

[14]  Jung Hyeun Kim,et al.  Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity , 2016 .

[15]  Nguyen Thai Loc,et al.  Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol–Gel Approach , 2016, Journal of Electronic Materials.

[16]  Lin Zhu,et al.  Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue , 2015, Nanotechnology.

[17]  Tuo Wang,et al.  Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. , 2014, Chemical Society reviews.

[18]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[19]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[20]  Xiao‐Qing Yang,et al.  Emerging Applications of Atomic Layer Deposition for Lithium‐Ion Battery Studies , 2012, Advanced materials.

[21]  A. Tok,et al.  Atomic layer deposition for nanofabrication and interface engineering. , 2012, Nanoscale.

[22]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[23]  R. Wolters,et al.  Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry , 2011 .

[24]  Y. Lai,et al.  Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. , 2010, Journal of hazardous materials.

[25]  Tiancun Xiao,et al.  Preparation of highly visible-light active N-doped TiO2 photocatalyst , 2010 .

[26]  Jinlong Zhang,et al.  Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides , 2010 .

[27]  Jimmy C. Yu,et al.  A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. , 2009, Environmental science & technology.

[28]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[29]  C. Sanchez,et al.  Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts , 2007 .

[30]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[31]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[32]  Shuangxi Liu,et al.  An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue , 2007 .

[33]  G. Pacchioni,et al.  Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. , 2006, Journal of the American Chemical Society.

[34]  Geng‐yu Cao,et al.  The preparation of nitrogen-doped photocatalyst TiO2-xNx by ball milling , 2005 .

[35]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[36]  Oliver Diwald,et al.  Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .

[37]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[38]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[39]  OhnoTeruhisa,et al.  Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light , 2003 .

[40]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[41]  Kazumichi Yanagisawa and,et al.  Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature , 1999 .

[42]  M. Engelhard,et al.  Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces , 1995 .

[43]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[44]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[45]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.