Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates
暂无分享,去创建一个
[1] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[2] M. Talagrand. The Generic Chaining , 2005 .
[3] O. Guédon,et al. Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.
[4] Grigoris Paouris,et al. A stability result for mean width of Lp-centroid bodies , 2007 .
[5] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[6] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[7] C. Villani. Optimal Transport: Old and New , 2008 .
[8] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[9] L. R. Urazmetova,et al. УДК 338 , 2011 .
[10] Ronen Eldan,et al. Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.
[11] B. Klartag. A central limit theorem for convex sets , 2006, math/0605014.
[12] C. Villani. The founding fathers of optimal transport , 2009 .
[13] Gilles Hargé. A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces , 2004 .
[14] B. Klartag,et al. Approximately gaussian marginals and the hyperplane conjecture , 2010, 1001.0875.
[15] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[16] J. Bourgain. On the distribution of polynomials on high dimensional convex sets , 1991 .
[17] Jo Graham,et al. Old and new , 2000 .