Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates

Chaining techniques show that if X is an isotropic log-concave random vector in \(\mathbb{R}^{n}\) and Γ is a standard Gaussian vector then $$\displaystyle{\mathbb{E}\Vert X\Vert \leq Cn^{1/4}\mathbb{E}\Vert \varGamma \Vert }$$ for any norm \(\Vert \cdot \Vert\), where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant $$\displaystyle{\sigma _{n} =\sup {\Bigl ( \sqrt{\mathrm{Var }(\vert X\vert )};\ X\text{ isotropic and log-concave on }\mathbb{R}^{n}\Bigr )}.}$$ In particular, we show that if the thin-shell conjecture σ n = O(1) holds, then n 1∕4 can be replaced by log(n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.

[1]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[2]  M. Talagrand The Generic Chaining , 2005 .

[3]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.

[4]  Grigoris Paouris,et al.  A stability result for mean width of Lp-centroid bodies , 2007 .

[5]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[6]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[7]  C. Villani Optimal Transport: Old and New , 2008 .

[8]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[9]  L. R. Urazmetova,et al.  УДК 338 , 2011 .

[10]  Ronen Eldan,et al.  Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.

[11]  B. Klartag A central limit theorem for convex sets , 2006, math/0605014.

[12]  C. Villani The founding fathers of optimal transport , 2009 .

[13]  Gilles Hargé A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces , 2004 .

[14]  B. Klartag,et al.  Approximately gaussian marginals and the hyperplane conjecture , 2010, 1001.0875.

[15]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[16]  J. Bourgain On the distribution of polynomials on high dimensional convex sets , 1991 .

[17]  Jo Graham,et al.  Old and new , 2000 .