A Low-Supply-Voltage CMOS Sub-Bandgap Reference

A low-power (21 muW ) bandgap reference source that is operable from a nominal supply voltage of 1.4 V is described. The circuit provides an output voltage equal to the bandgap voltage having a low output resistance and allows resistive loading. It does not use resistors or operational amplifiers. Thus, the design is suitable for fabrication in any digital CMOS technology. The circuit uses a current conveyor and current mirrors to convert the proportional to absolute temperature voltage into a current using a MOSFET. The current is converted back to a voltage by using the functional inverse of the FET v-i characteristics. This makes the voltage gain linear and temperature independent. The absence of back-gate bias is the reason for achieving the low supply voltage of operation. Simulation results using the transistor models for the 0.18-mum TSMC process show that the voltage-variation over the temperature range 0 to 100degC is <1 mV.

[1]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[2]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[3]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[4]  T. R. Viswanathan,et al.  The CMOS negative impedance converter , 1988 .

[5]  Ming-Dou Ker,et al.  New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  K. Leung,et al.  A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device , 2002, IEEE J. Solid State Circuits.

[7]  Stephen H. Lewis,et al.  A 1.4-V Supply CMOS Fractional Bandgap Reference , 2006, VLSIC 2006.

[8]  A. Boni,et al.  Op-amps and startup circuits for CMOS bandgap references with near 1-V supply , 2002, IEEE J. Solid State Circuits.

[9]  R. Widlar,et al.  Some Circuit Design Techniques for Linear Integrated Circuits , 1965 .

[10]  Kenneth C. Smith,et al.  The current conveyor—A new circuit building block , 1968 .

[11]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[12]  J. Hanson,et al.  CMOS voltage to current transducers , 1985 .

[13]  J. F. Duque-Carrillo,et al.  1-V rail-to-rail operational amplifiers in standard CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[14]  C. Fiocchi,et al.  Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[15]  T. R. Viswanathan,et al.  A 1.4 V Supply CMOS Fractional Bandgap Reference , 2006, IEEE Journal of Solid-State Circuits.

[16]  Giuseppe de Vita,et al.  An ultra-low-power, temperature compensated voltage reference generator , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[17]  R. J. Widlar,et al.  New developments in IC voltage regulators , 1970 .

[18]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[19]  T. R. Viswanathan,et al.  A CMOS bandgap reference without resistors , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).