Optimization on the Hierarchical Tucker manifold – Applications to tensor completion
暂无分享,去创建一个
[1] Bart Vandereycken,et al. Low-rank tensor completion by Riemannian optimization , 2014 .
[2] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[3] Jared Tanner,et al. Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing , 2015, IEEE Transactions on Signal Processing.
[4] Daniel Kressner,et al. Algorithm 941 , 2014 .
[5] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .
[6] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[7] L. Demanet. Curvelets, Wave Atoms, and Wave Equations , 2006 .
[8] Antonio Falcó,et al. Geometric Structures in Tensor Representations (Release 2) , 2014 .
[9] Johan A. K. Suykens,et al. Tensor Versus Matrix Completion: A Comparison With Application to Spectral Data , 2011, IEEE Signal Processing Letters.
[10] Wotao Yin,et al. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..
[11] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[12] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[13] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[14] Bamdev Mishra,et al. R3MC: A Riemannian three-factor algorithm for low-rank matrix completion , 2013, 53rd IEEE Conference on Decision and Control.
[15] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[16] Nadia Kreimer,et al. Tensor Completion via Nuclear Norm Minimization for 5D Seismic Data Reconstruction , 2012 .
[17] John Wright,et al. Provable Low-Rank Tensor Recovery , 2014 .
[18] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[19] F. Verstraete,et al. Post-matrix product state methods: To tangent space and beyond , 2013, 1305.1894.
[20] C. D. Silva. Hierarchical Tucker Tensor Optimization-Applications to Tensor Completion , 2013 .
[21] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[22] Yonina C. Eldar,et al. Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.
[23] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[24] Claudia Landi,et al. The natural pseudo-distance as a quotient pseudo-metric, and applications , 2015 .
[25] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[26] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[27] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[28] Z. J. Shi,et al. New Inexact Line Search Method for Unconstrained Optimization , 2005 .
[29] Daniel M. Dunlavy,et al. A scalable optimization approach for fitting canonical tensor decompositions , 2011 .
[30] André Uschmajew,et al. Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..
[31] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[32] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[33] Reinhold Schneider,et al. Tensor completion in hierarchical tensor representations , 2014, ArXiv.
[34] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[35] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[36] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[37] Christine Tobler,et al. Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .
[38] Bo Huang,et al. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.
[39] Bamdev Mishra,et al. Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..
[40] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[41] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[42] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[43] Zhen-Jun Shi,et al. Convergence of line search methods for unconstrained optimization , 2004, Appl. Math. Comput..
[44] B. Recht,et al. Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .
[45] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[46] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[47] Lars Grasedyck,et al. Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..
[48] Nadia Kreimer,et al. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .
[49] Reinhold Schneider,et al. Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..
[50] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[51] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..