Community-driven ELIXIR activities in single-cell omics

Single-cell omics (SCO) has revolutionized the way and the level of resolution by which life science research is conducted, not only impacting our understanding of fundamental cell biology but also providing novel solutions in cutting-edge medical research. The rapid development of single-cell technologies has been accompanied by the active development of data analysis methods, resulting in a plethora of new analysis tools and strategies every year. Such a rapid development of SCO methods and tools poses several challenges in standardization, benchmarking, computational resources and training. These challenges are in line with the activities of ELIXIR, the European coordinated infrastructure for life science data. Here, we describe the current landscape of and the main challenges in SCO data, and propose the creation of the ELIXIR SCO Community, to coordinate the efforts in order to best serve SCO researchers in Europe and beyond. The Community will build on top of national experiences and pave the way towards integrated long-term solutions for SCO research.

[1]  L. Pachter,et al.  Museum of spatial transcriptomics , 2020, Nature Methods.

[2]  A. M. Allen,et al.  Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly , 2021, bioRxiv.

[3]  A. Regev,et al.  Cell type ontologies of the Human Cell Atlas , 2021, Nature Cell Biology.

[4]  J. Saez-Rodriguez,et al.  Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges. , 2021, Cell systems.

[5]  M. Heikenwalder,et al.  SpaceM reveals metabolic states of single cells , 2021, Nature Methods.

[6]  Ariel J. Levine,et al.  Confronting false discoveries in single-cell differential expression , 2021, Nature Communications.

[7]  S. Tay,et al.  Single-Cell Proteomics. , 2021, Trends in biochemical sciences.

[8]  John M. Hancock,et al.  ELIXIR‐EXCELERATE: establishing Europe's data infrastructure for the life science research of the future , 2021, The EMBO journal.

[9]  S. Armstrong,et al.  High-resolution characterization of gene function using single-cell CRISPR tiling screen , 2021, Nature Communications.

[10]  Method of the Year 2020: spatially resolved transcriptomics , 2021, Nature Methods.

[11]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[12]  Philipp Berens,et al.  Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data , 2020, Genome Biology.

[13]  M. Pirooznia,et al.  Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones , 2020, Genes.

[14]  Shuqiang Li,et al.  High throughput single-cell detection of multiplex CRISPR-edited gene modifications , 2020, Genome biology.

[15]  Fabian J Theis,et al.  LifeTime and improving European healthcare through cell-based interceptive medicine , 2020, Nature.

[16]  M Dugas,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2020, Nature Methods.

[17]  Mateusz Kuzak,et al.  Ten simple rules for making training materials FAIR , 2020, PLoS Comput. Biol..

[18]  Aleksandra Nenadic,et al.  TeSS: a platform for discovering life-science training opportunities , 2020, Bioinform..

[19]  Alexey M. Kozlov,et al.  Eleven grand challenges in single-cell data science , 2020, Genome Biology.

[20]  Lingling An,et al.  Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey , 2020, Frontiers in Genetics.

[21]  Stephanie C. Hicks,et al.  A systematic evaluation of single-cell RNA-sequencing imputation methods , 2020, Genome Biology.

[22]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[23]  S. Preissl,et al.  Single-cell multimodal omics: the power of many , 2020, Nature Methods.

[24]  Deanne M. Taylor,et al.  Guidelines for reporting single-cell RNA-seq experiments , 2019, Nature Biotechnology.

[25]  Shila Ghazanfar,et al.  Toward a Common Coordinate Framework for the Human Body , 2019, Cell.

[26]  Chenglong Xia,et al.  Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression , 2019, Proceedings of the National Academy of Sciences.

[27]  M. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[28]  Lior Pachter,et al.  A curated database reveals trends in single-cell transcriptomics , 2019, bioRxiv.

[29]  Jeffrey M. Perkel,et al.  Starfish enterprise: finding RNA patterns in single cells , 2019, Nature.

[30]  Yvan Saeys,et al.  Essential guidelines for computational method benchmarking , 2018, Genome Biology.

[31]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[32]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[33]  Marcel J. T. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[34]  Z. Bar-Joseph,et al.  Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data , 2019, bioRxiv.

[35]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[36]  Lana S. Martin,et al.  Systematic benchmarking of omics computational tools , 2019, Nature Communications.

[37]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[38]  Shila Ghazanfar,et al.  The human body at cellular resolution: the NIH Human Biomolecular Atlas Program , 2019, Nature.

[39]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[40]  Pedro L. Fernandes,et al.  A new pan-European Train-the-Trainer programme for bioinformatics: pilot results on feasibility, utility and sustainability of learning , 2017, Briefings Bioinform..

[41]  Loriene Roy,et al.  What Is a Reference Source? , 2018, The Reference Librarian.

[42]  Renan Valieris,et al.  Bioconda: sustainable and comprehensive software distribution for the life sciences , 2018, Nature Methods.

[43]  Marius van den Beek,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[44]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[45]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[46]  Luke Zappia,et al.  Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database , 2017, bioRxiv.

[47]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[48]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[49]  Anthony Bretaudeau,et al.  Community-driven data analysis training for biology , 2017, bioRxiv.

[50]  Alfonso Valencia,et al.  Lessons Learned: Recommendations for Establishing Critical Periodic Scientific Benchmarking , 2017, bioRxiv.

[51]  Pedro L. Fernandes,et al.  The ELIXIR-EXCELERATE Train-the-Trainer pilot programme: empower researchers to deliver high-quality training , 2017, F1000Research.

[52]  Justin P Sandoval,et al.  Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.

[53]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[54]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[55]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[56]  Harald Barsnes,et al.  BioContainers: an open-source and community-driven framework for software standardization , 2017, Bioinform..

[57]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[58]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[59]  Olivier Elemento,et al.  Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq , 2016, Genome Medicine.

[60]  Jonathan Y. Hsu,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[61]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[62]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[63]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[64]  Celia W. G. van Gelder,et al.  GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training , 2015, PLoS Comput. Biol..

[65]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[66]  Kun Zhang,et al.  Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues , 2015, Nature Protocols.

[67]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[68]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[69]  Method of the Year 2013 , 2013, Nature Methods.

[70]  Mikko Koski,et al.  Chipster: user-friendly analysis software for microarray and other high-throughput data , 2011, BMC Genomics.

[71]  O. Ornatsky,et al.  Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. , 2009, Analytical chemistry.

[72]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[73]  Steven C. Horii,et al.  Update of the ACR-NEMA digital imaging and communications in medicine standard , 1992 .