Control of cortical oscillatory frequency by a closed-loop system

[1]  Daniel J Buysse,et al.  Slow-Wave Activity Enhancement to Improve Cognition , 2018, Trends in Neurosciences.

[2]  Maria V. Sanchez-Vives,et al.  Modulation of slow and fast oscillations by direct current stimulation in the cerebral cortex in vitro , 2018, bioRxiv.

[3]  Bradley C. Lega,et al.  Closed-loop stimulation of temporal cortex rescues functional networks and improves memory , 2018, Nature Communications.

[4]  Marcello Massimini,et al.  Shaping the Default Activity Pattern of the Cortical Network , 2017, Neuron.

[5]  S. Rossi,et al.  Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) , 2017, Clinical Neurophysiology.

[6]  M. Mattia,et al.  Slow wave activity as the default mode of the cerebral cortex. , 2014, Archives italiennes de biologie.

[7]  Felice T. Sun,et al.  Closed-loop Neurostimulation: The Clinical Experience , 2014, Neurotherapeutics.

[8]  Shimon Marom,et al.  Controlling neural network responsiveness: tradeoffs and constraints , 2014, Front. Neuroeng..

[9]  P. Brown,et al.  Adaptive Deep Brain Stimulation In Advanced Parkinson Disease , 2013, Annals of neurology.

[10]  J. Born,et al.  Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory , 2013, Neuron.

[11]  György Buzsáki,et al.  High frequency oscillations in the intact brain , 2012, Progress in Neurobiology.

[12]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[13]  M. V. Sanchez-Vives,et al.  Spontaneous Rhythmic Activity in the Adult Cerebral Cortex In Vitro , 2012 .

[14]  Maria V. Sanchez-Vives,et al.  Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. , 2011, Journal of neurophysiology.

[15]  Steven J. Schiff,et al.  Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience , 2011 .

[16]  S. Haber,et al.  Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism , 2011, Neuron.

[17]  M. Nitsche,et al.  Noninvasive brain stimulation protocols in the treatment of epilepsy: Current state and perspectives , 2009, Neurotherapeutics.

[18]  L. Parra,et al.  Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing , 2010, The Journal of Neuroscience.

[19]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[20]  Avner Wallach,et al.  A Generic Framework for Real-Time Multi-Channel Neuronal Signal Analysis, Telemetry Control, and Sub-Millisecond Latency Feedback Generation , 2010, Front. Neurosci..

[21]  Steve M. Potter,et al.  Closed-Loop, Open-Source Electrophysiology , 2010, Front. Neurosci..

[22]  Maria V. Sanchez-Vives,et al.  Temperature modulation of slow and fast cortical rhythms. , 2010, Journal of neurophysiology.

[23]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[24]  J. Born,et al.  Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding , 2009, Proceedings of the National Academy of Sciences.

[25]  Albert Compte,et al.  Spontaneous High-Frequency (10–80 Hz) Oscillations during Up States in the Cerebral Cortex In Vitro , 2008, The Journal of Neuroscience.

[26]  L. Cohen,et al.  Transcranial direct current stimulation: State of the art 2008 , 2008, Brain Stimulation.

[27]  M Arsiero,et al.  Real-time closed-loop electrophysiology: towards new frontiers in in vitro investigations in the neurosciences. , 2007, Archives italiennes de biologie.

[28]  E. Fetz,et al.  Long-term motor cortex plasticity induced by an electronic neural implant , 2006, Nature.

[29]  J. Born,et al.  Boosting slow oscillations during sleep potentiates memory , 2006, Nature.

[30]  Andrew Jackson,et al.  An autonomous implantable computer for neural recording and stimulation in unrestrained primates , 2005, Journal of Neuroscience Methods.

[31]  Steve M. Potter,et al.  Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation , 2005, The Journal of Neuroscience.

[32]  J. Born,et al.  Transcranial Direct Current Stimulation during Sleep Improves Declarative Memory , 2004, The Journal of Neuroscience.

[33]  Ronald L Calabrese,et al.  Using a Hybrid Neural System to Reveal Regulation of Neuronal Network Activity by an Intrinsic Current , 2004, The Journal of Neuroscience.

[34]  Claudio Babiloni,et al.  Abnormal fronto‐parietal coupling of brain rhythms in mild Alzheimer's disease: a multicentric EEG study , 2004, The European journal of neuroscience.

[35]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[36]  David J. Christini,et al.  Real-Time Linux Dynamic Clamp: A Fast and Flexible Way to Construct Virtual Ion Channels in Living Cells , 2001, Annals of Biomedical Engineering.

[37]  C. Stam,et al.  EEG synchronization in mild cognitive impairment and Alzheimer's disease , 2003, Acta neurologica Scandinavica.

[38]  M. Mattia,et al.  Population dynamics of interacting spiking neurons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[40]  N Accornero,et al.  Polarization of the human motor cortex through the scalp , 1998, Neuroreport.

[41]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  A. Benabid,et al.  Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation , 1995, The Lancet.

[43]  J. Desmedt,et al.  Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception , 1994, Neuroscience Letters.

[44]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[45]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[47]  G. Aghajanian,et al.  Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices , 1989, Synapse.

[48]  J. Bouyer,et al.  [Parietal electrocortical rhythms in the cat: their relation to a behavior of focused attention and possible mesencephalic control through a dopaminergic pathway]. , 1980, Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles.

[49]  F. H. Lopes da Silva,et al.  Dynamic characteristics of visual evoked potentials in the dog. I. Cortical and subcortical potentials evoked by sine wave modulated light. , 1970, Electroencephalography and clinical neurophysiology.

[50]  F. H. Lopes da Silva,et al.  Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. , 1970, Electroencephalography and clinical neurophysiology.

[51]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.