Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions.

Fuel cell technology is one of the key emerging technologies that is currently attracting tremendous effort with the aim to provide alternative environmentally friendly and efficient power sources. The worldwide move away from conventional fossil fuel combustion power generation technologies is driving much of this important research. The replacement of a liquid electrolyte by PEM in such systems has eliminated the corrosion problems and conferred on the system additional advantages such as simplicity of construction, compactness, and quick self-starting at ambient temperatures. The successful performance of these kinds of fuel cell systems depends critically on the role played by the PEM. The second category involves the formation of acid-base complexes that provide a viable alternative for membranes that can maintain high conductivity at elevated temperatures without suffering from dehydration effects.

[1]  Junichi Tsukada,et al.  Preparation of Highly Stable Ion Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene and Bis(vinyl phenyl)ethane Into Crosslinked Polytetrafluoroethylene Films , 2007 .

[2]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[3]  Mostak Ahmed,et al.  Gamma Radiation-Induced Graft Copolymerization of Styrene Onto Polyethyleneterephthalate Films: Application in Fuel Cell Technology as a Proton Exchange Membrane , 2011 .

[4]  B. Gupta,et al.  Performance of Differently Cross‐Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cells , 1995 .

[5]  F. Sundholm,et al.  Effects of irradiation on sulfonation of poly(vinyl fluoride) , 1997 .

[6]  E. Roduner,et al.  EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes , 1999 .

[7]  John W. Weidner,et al.  Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature , 2008 .

[8]  Y. Maekawa,et al.  Polymer Electrolyte Membranes Having Sulfoalkyl Grafts into ETFE Film Prepared by Radiation-Induced Copolymerization of Methyl Acrylate and Methyl Methacrylate , 2009 .

[9]  F. Cardona,et al.  Thermal characterization of copolymers obtained by radiation grafting of styrene onto poly(tetrafluoroethylene-perfluoropropylvinylether) substrates: thermal decomposition, melting behavior and low-temperature transitions , 2001 .

[10]  M. Nasef,et al.  Single Radiation‐Induced Grafting Method for the Preparation of Two Proton‐ and Lithium Ion‐Conducting Membranes , 2006 .

[11]  H. Solak,et al.  Microstructured polymer films by X-ray lithographic exposure and grafting , 2005 .

[12]  U. Scheler,et al.  Identification of new chemical structures in poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) irradiated in vacuum at different temperatures , 2003 .

[13]  W. Li,et al.  Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications , 2012 .

[14]  Naoki Hasegawa,et al.  Cell performances of direct methanol fuel cells with grafted membranes , 2002 .

[15]  Y. Maekawa,et al.  Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films , 2007 .

[16]  T. Kallio,et al.  Water in different poly(styrene sulfonic acid)‐grafted fluoropolymers , 2002 .

[17]  A. Ismail,et al.  PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol , 2006 .

[18]  A. Oshima,et al.  ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE) , 1997 .

[19]  T. Maiyalagan,et al.  Components for PEM Fuel Cells: An Overview , 2010 .

[20]  B. Svarfvar,et al.  Electron‐beam graft‐modified membranes with externally controlled flux , 1996 .

[21]  P. Vie,et al.  Fuel cell performance of proton irradiated and subsequently sulfonated poly(vinyl fluoride) membranes , 2002 .

[22]  D. Ostrovskii,et al.  State of water in sulfonated poly(vinyl fluoride) membranes: an FTIR study , 1999 .

[23]  Robert C T Slade,et al.  Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. , 2006, The journal of physical chemistry. B.

[24]  Hamdani Saidi,et al.  Cation Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene onto PFA Copolymer Films. IV. Morphological Investigations Using X-Ray Photoelectron Spectroscopy , 2000 .

[25]  Jamie P. Kizewski,et al.  Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells , 2010 .

[26]  U. Lappan,et al.  Radiation-induced grafting of styrene into radiation-modified fluoropolymer films , 2005 .

[27]  A. Wokaun,et al.  Study of nitrile-containing proton exchange membranes prepared by radiation grafting: Performance and degradation in the polymer electrolyte fuel cell , 2013 .

[28]  R. He,et al.  The acid doping behavior of polybenzimidazole membranes in phosphoric acid for proton exchange membrane fuel cells , 2008 .

[29]  R. Slade,et al.  The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation , 2003 .

[30]  M. Washio,et al.  Improving the properties of the proton exchange membranes by introducing α-methylstyrene in the pre-irradiation induced graft polymerization , 2006 .

[31]  M. Washio,et al.  Evaluation of PEFC Membrane based on Cross-linked PTFE by EB Grafting : Effect of Thickness for FC Performance , 2012 .

[32]  G. Hambitzer,et al.  Proton conductive thin films prepared by plasma polymerization , 2001 .

[33]  R. Neumann,et al.  Preparation of ion-track membranes of poly(p-phenylene terephthalamide): Control of pore shape by irradiation with different ion beams , 2007 .

[34]  Arnab Bhattacharya,et al.  Grafting: a versatile means to modify polymers Techniques, factors and applications , 2004 .

[35]  Jingye(李景烨) Li,et al.  A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization , 2010 .

[36]  Xinmiao Zeng,et al.  A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films , 2009 .

[37]  Jiujun Zhang,et al.  A review of polymer electrolyte membranes for direct methanol fuel cells , 2007 .

[38]  S. Ivanchev,et al.  Polymer Membranes for Fuel Cells: Achievements and Problems , 2011 .

[39]  S. Nakazawa,et al.  An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore‐Filling Electrolyte Membrane for Direct Methanol Fuel Cells , 2007 .

[40]  R. Slade,et al.  Development of Cathode Architectures Customized for H2/O2 Metal-Cation-Free Alkaline Membrane Fuel Cells , 2007 .

[41]  Tim R. Dargaville,et al.  High energy radiation grafting of fluoropolymers , 2003 .

[42]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[43]  H. Kubota,et al.  Nano-Structure Controlled Polymer Electrolyte Membranes for Fuel Cell Applications Prepared by Ion Beam Irradiation , 2006 .

[44]  Jiujun Zhang,et al.  Electrocatalysis of Direct Methanol Fuel Cells , 2009 .

[45]  F. Sundholm,et al.  Radiation grafting of styrene onto poly(vinylidene fluoride) films in propanol: The influence of solvent and synthesis conditions , 2000 .

[46]  S. A. Gürsel,et al.  Radiation Grafted Membranes for Polymer Electrolyte Fuel Cells , 2005 .

[47]  B. Améduri,et al.  Functional fluoropolymers for fuel cell membranes , 2005 .

[48]  Xiaolan Wei,et al.  Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells , 2010 .

[49]  Wei Li,et al.  Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells , 2010 .

[50]  Supramaniam Srinivasan,et al.  Analysis of proton exchange membrane fuel cell performance with alternate membranes , 1995 .

[51]  Ling Huang,et al.  Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95 °C , 2009 .

[52]  E. Shamsaei,et al.  Parametric investigations on proton conducting membrane by radiation induced grafting of 4-vinylpyridine onto poly(vinylidene fluoride) and phosphoric acid doping , 2014 .

[53]  K. Kontturi,et al.  Characterization of the novel ETFE-based membrane , 2006 .

[54]  M. Washio,et al.  Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting , 2003 .

[55]  Y. Nho,et al.  Preparation and characterization of a proton‐exchange membrane by the radiation grafting of styrene onto polytetrafluoroethylene films , 2006 .

[56]  Hamdani Saidi,et al.  Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelecton spectroscopy , 2002 .

[57]  Y. Maekawa,et al.  Radiation-induced graft polymerization of functional monomer into poly(ether ether ketone) film and structure-property analysis of the grafted membrane , 2011 .

[58]  D. Jehnichen,et al.  Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE) , 2001 .

[59]  M. Nasef,et al.  Preparation of crosslinked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films , 2003 .

[60]  R. Mazzei,et al.  Radiation grafting of different monomers onto PP foils irradiated with a 25 MeV proton beam , 2003 .

[61]  Y. Nho,et al.  Preparation of PFA-g-polystyrene sulfonic acid membranes by the γ-radiation grafting of styrene onto PFA films , 2005 .

[62]  M. Nasef,et al.  XPS Studies of Radiation Grafted PTFE-g-polystyrene Sulfonic Acid Membranes , 2000 .

[63]  G. Scherer,et al.  Modification and characterization of thin polymer films for electrochemical applications , 1998 .

[64]  C. Wieser,et al.  Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits , 2004 .

[65]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.

[66]  M. Elomaa,et al.  Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride) , 1998 .

[67]  M. Nasef,et al.  Part II. Properties of the grafted and sulfonated membranes , 2000 .

[68]  F. Jiang,et al.  Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediate-temperature fuel cells , 2012 .

[69]  K. Friedrich,et al.  Modified Nafion®-based membranes for use in direct methanol fuel cells , 2002 .

[70]  F. Cardona,et al.  Comparative study of the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) and polypropylene substrates. I: Kinetics and structural investigation , 2003 .

[71]  G. Scherer,et al.  Grafting of pre-irradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: influence of base polymer film properties and processing parameters , 2000 .

[72]  A. Wokaun,et al.  Novel ETFE based radiation grafted poly(styrene sulfonic acid-co-methacrylonitrile) proton conducting membranes with increased stability , 2009 .

[73]  T. Ohsaka,et al.  A simple in situ characterization technique for the onset of the chemical degradation of PEM fuel cells' fluorinated membranes , 2008 .

[74]  Cy H. Fujimoto,et al.  Transport Properties of Hydroxide and Proton Conducting Membranes , 2008 .

[75]  Peter Lund,et al.  Crosslinking and alkyl substitution in nano-structured grafted fluoropolymer for use as proton-exchange membranes in fuel cells , 2009 .

[76]  T. Momose,et al.  Radiation grafting of α,β,β‐trifluorostyrene onto poly(ethylene–tetrafluoroethylene) film by preirradiation method. III. Properties of anion‐exchange membrane obtained by chloromethylation and quaternization of the grafted film , 1990 .

[77]  Hamdani Saidi,et al.  Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethyleneco- hexafluoropropylene) films. I. Effect of grafting conditions , 2000 .

[78]  Y. Nho,et al.  Irradiated PVdF-HFP–tin oxide composite membranes for the applications of direct methanol fuel cells , 2010 .

[79]  Göran Sundholm,et al.  Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride) , 1999 .

[80]  Pramod K. Singh,et al.  Progress in ionic organic-inorganic composite membranes for fuel cell applications , 2010 .

[81]  Mark R. Wiesner,et al.  Recent advances in proton exchange membranes for fuel cell applications , 2012 .

[82]  T. Rager Pre-irradiation grafting of styrene/divinylbenzene onto poly(tetrafluoroethylene-co-hexafluoropropylene) from non-solvents , 2003 .

[83]  M. Khayet,et al.  Sulfonated radiation grafted polystyrene pore-filled poly(vinylidene fluoride) membranes for direct methanol fuel cells: structure–property correlations , 2006 .

[84]  K. Kontturi,et al.  New ETFE-based membrane for direct methanol fuel cell , 2005 .

[85]  Q. Liu,et al.  Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells , 2009 .

[86]  M. Nasef,et al.  Investigation of electron irradiation induced-changes in poly(vinylidene fluoride) films , 2002 .

[87]  G. Schmidt-naake,et al.  Proton Conducting Membranes Obtained by Doping Radiation-Grafted Basic Membrane Matrices with Phosphoric Acid , 2007 .

[88]  M. Washio,et al.  Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions , 2004 .

[89]  R. Rohani,et al.  Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly(ethylene-co-tetrafluoroethylene) films: Kinetics study , 2007 .

[90]  Gérard Gebel,et al.  Water sorption-desorption in Nafion ® membranes at low temperature, probed by micro X-ray diffraction , 2007 .

[91]  A. Wokaun,et al.  Cross-Linker Effect in ETFE-Based Radiation-Grafted Proton-Conducting Membranes II. Extended Fuel Cell Operation and Degradation Analysis , 2009 .

[92]  Lei Li,et al.  Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells , 2005 .

[93]  N. Everall Modeling and Measuring the Effect of Refraction on the Depth Resolution of Confocal Raman Microscopy , 2000 .

[94]  A. Wokaun,et al.  Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film , 2009 .

[95]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[96]  Y. Hama,et al.  Development of function-graded proton exchange membrane for PEFC using heavy ion beam irradiation , 2011 .

[97]  Hamdani Saidi,et al.  Surface investigations of radiation grafted FEP-g-polystyrene sulfonic acid membranes using XPS , 2000 .

[98]  T. Momose,et al.  Radiation grafting of α,β,β-trifluorostyrene onto poly(ethylene-tetrafluoroethylene) film by preirradiation method. II. Properties of cation-exchange membrane obtained by sulfonation and hydrolysis of the grafted film , 1989 .

[99]  S. Holdcroft,et al.  Electrochemical Characterization of Ethylenetetrafluoroethylene‐g‐polystyrenesulfonic Acid Solid Polymer Electrolytes , 2000 .

[100]  H. Solak,et al.  Preparation of micro- and nanopatterns of polymer chains grafted onto flexible polymer substrates. , 2004, Journal of the American Chemical Society.

[101]  Y. Maekawa,et al.  Preparation of polymer electrolyte membranes consisting of alkyl sulfonic acid for a fuel cell using radiation grafting and subsequent substitution/elimination reactions , 2008 .

[103]  M. Nasef Effect of solvents on radiation‐induced grafting of styrene onto fluorinated polymer films , 2001 .

[104]  G. Sundholm,et al.  Water sorption and diffusion coefficients of protons and Water in PVDF-g-PSSA polymer electrolyte membranes , 1999 .

[105]  Michael D. Guiver,et al.  Radiation-grafted membranes based on polyethylene for direct methanol fuel cells , 2010 .

[106]  M. Nasef,et al.  Structure-property Relationships in Radiation Grafted Poly(tetrafluoroethylene)-graft-polystyrene Sulfonic Acid Membranes , 2005 .

[107]  Won-Yong Lee,et al.  Performance of solid alkaline fuel cells employing anion-exchange membranes , 2008 .

[108]  Ashok Kumar,et al.  Preparation of strong base anion exchange membrane using 60Co gamma radiation , 2005 .

[109]  Q. Xin,et al.  Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell , 2008 .

[110]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[111]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[112]  Antonino S. Aricò,et al.  DMFCs: From Fundamental Aspects to Technology Development , 2001 .

[113]  D. Wan,et al.  Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells , 2009 .

[114]  M. Karjalainen,et al.  Structure of Sulfonated poly(vinyl fluoride) , 1999 .

[115]  A. Oshima,et al.  Temperature effects on radiation induced phenomena in polytetrafluoroetylene (PTFE)—Change of G-value , 1997 .

[116]  M. Karjalainen,et al.  New Polymer Electrolyte Membranes for Low Temperature Fuel Cells , 1999 .

[117]  A. Ismail,et al.  Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cells , 2006 .

[118]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[119]  T. Yamaki,et al.  Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films , 2006 .

[120]  K. Scott,et al.  Salt splitting with radiation grafted PVDF anion-exchange membrane , 2003 .

[121]  S. Holdcroft,et al.  Dependence of methanol permeability on the nature of water and the morphology of graft copolymer proton exchange membranes , 2006 .

[122]  R. Slade,et al.  Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells , 2003 .

[123]  Tim R. Dargaville,et al.  An investigation of the nitroxide-mediated preirradiation grafting of styrene onto PFA , 2004 .

[124]  Neil J. Everall,et al.  Confocal Raman Microscopy: Why the Depth Resolution and Spatial Accuracy Can Be Much Worse Than You Think , 2000 .

[125]  K. V. Lovell,et al.  Synthesis and characterisation of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers , 2002 .

[126]  L. Gubler,et al.  Trends for fuel cell membrane development , 2010 .

[127]  Y. Maekawa,et al.  Polymer electrolyte hybrid membranes prepared by radiation grafting of p-styryltrimethoxysilane into poly(ethylene-co-tetrafluoroethylene) films , 2007 .

[128]  R. Slade,et al.  Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes , 2005 .

[129]  M. Nasef,et al.  Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films , 2003 .

[130]  P. C. Deb,et al.  Radiation‐grafted solid polymer electrolyte membrane: thermal and mechanical properties of sulfonated fluorinated ethylene propylene copolymer (FEP)‐graft‐acrylic acid membranes , 2004 .

[131]  K. V. Lovell,et al.  Fuel Cell Performance of Radiation Grafted Sulphonic Acid Membranes , 2001 .

[132]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[133]  A. Tsukada,et al.  Radiation-grafted membrane/electrode assemblies with improved interface , 2002 .

[134]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[135]  Hamdani Saidi,et al.  Comparative investigations of radiation‐grafted proton‐exchange membranes prepared using single‐step and conventional two‐step radiation‐induced grafting methods , 2011 .

[136]  L. Pratt,et al.  Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline Fuel Cell Membranes , 2008 .

[137]  Zhiqiang Hu,et al.  The effect of additives on radiation-induced grafting of AA and SSS onto HDPE , 2007 .

[138]  Tai-Shung Chung Membrane Formation and Modification, Edited by I. Pinnau and B.D. Freeman, American Chemical Society, Washington, DC, 1999 , 2001 .

[139]  G. Sundholm,et al.  Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes , 2003 .

[140]  Y. Maekawa,et al.  Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique , 2008 .

[141]  J. Gardette,et al.  Ex situ hydrolytic degradation of sulfonated polyimide membranes for fuel cells , 2006 .

[142]  A. Hiroki,et al.  Effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) film , 2005 .

[143]  U. Gohs,et al.  Radiation‐Induced Graft Copolymerization of Styrene into Tetrafluoroethylene‐Hexafluoropropylene‐Vinylidene Fluoride (THV) Terpolymer Films , 2011 .

[144]  O. Güven,et al.  Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions , 2012 .

[145]  R. Zhou,et al.  Preparation of cation-exchange membrane containing bi-functional groups by radiation induced grafting of acrylic acid and sodium styrene sulfonate onto HDPE: Influence of the synthesis conditions , 2009 .

[146]  M. Nasef,et al.  Cation Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene onto PFA Copolymer Films. I. Preparation and Characterization of the Graft Copolymer , 1999 .

[147]  O. Haas,et al.  Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films. Synthesis and characterization , 1993 .

[148]  P. C. Deb,et al.  Proton exchange membranes by grafting of styrene–acrylic acid onto FEP by preirradiation technique. II. Physicochemical properties of the membrane and its sulfonated derivatives , 2004 .

[149]  G. Scherer,et al.  A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes , 2003 .

[150]  M. Nasef Thermal stability of radiation grafted PTFE-g-polystyrene sulfonic acid membranes , 2000 .

[151]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[152]  Y. Maekawa,et al.  Suitability of some fluoropolymers used as base films for preparation of polymer electrolyte fuel cell membranes , 2006 .

[153]  Sandor Balog,et al.  Proton conducting membranes prepared by radiation grafting of styrene and various comonomers , 2014 .

[154]  S. Tsuneda,et al.  Novel Ion‐Exchange Membranes for Electrodialysis Prepared by Radiation‐Induced Graft Polymerization , 1995 .

[155]  S. Basu,et al.  Synthesis of ion-exchange membranes by radiation grafting , 1989 .

[156]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[157]  M. Hein,et al.  In-situ spin trap electron paramagnetic resonance study of fuel cell processes , 2004 .

[158]  P. Shen,et al.  Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells , 2006 .

[159]  M. Nasef,et al.  Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films , 2011 .

[160]  F. de Bruijn,et al.  Review: Durability and Degradation Issues of PEM Fuel Cell Components , 2008 .

[161]  M. Nasef Structural investigations of poly(ethylene terephthalate)‐graft‐polystyrene copolymer films , 2002 .

[162]  A. Oshima,et al.  Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene , 2001 .

[163]  Y. Nho,et al.  A study on the distribution of polystyrene sulfonic acid grafts over the cross-section of a PFA film , 2009 .

[164]  Günther G. Scherer,et al.  Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells , 1995 .

[165]  A. Wokaun,et al.  Advanced monomer combinations for radiation grafted fuel cell membranes , 2006 .

[166]  S. A. Gürsel,et al.  Synthesis and characterization of novel graft copolymers by radiation induced grafting , 2011 .

[167]  Thomas J. Schmidt,et al.  Performance and Durability of Membrane Electrode Assemblies Based on Radiation‐Grafted FEP‐g‐Polystyrene Membranes , 2004 .

[168]  M. Guiver,et al.  Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes: I. Influence of grafting conditions , 2008 .

[169]  E. Shamsaei,et al.  Optimization strategies for radiation induced grafting of 4-vinylpyridine onto poly(ethylene-co-tetraflouroethene) film using box-behnken design , 2012 .

[170]  R. Mesrobian,et al.  Studies on graft copolymers derived by ionizing radiation , 1957 .

[171]  Ashok Kumar,et al.  Preparation of strong acid cation-exchange membrane using radiation-induced graft polymerisation , 2005 .

[172]  V. Antonucci,et al.  Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells , 2003 .

[173]  M. Yandrasits,et al.  Proton Exchange Membranes for Fuel Cell Applications , 2006 .

[174]  A. Wokaun,et al.  Damage to fuel cell membranes. Reaction of HO* with an oligomer of poly(sodium styrene sulfonate) and subsequent reaction with O(2). , 2010, Physical chemistry chemical physics : PCCP.

[175]  T. Kallio,et al.  Synthesis of proton‐conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques , 2002 .

[176]  B. Yi,et al.  Conductivity of aromatic-based proton exchange membranes at subzero temperatures , 2008 .

[177]  K. Scott,et al.  Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance , 2012 .

[178]  A. Shukla,et al.  Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview , 2009 .

[179]  Soo-Bok Lee,et al.  Sulfonated polystyrene/PTFE composite membranes , 2005 .

[180]  T. Kallio,et al.  Radiation‐grafted ion‐exchange membranes: Influence of the initial matrix on the synthesis and structure , 2001 .

[181]  Y. Nho,et al.  Simultaneous radiation grafting of vinylbenzyl chloride onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) films , 2009 .

[182]  M. Washio,et al.  Fabrication of PEFC membrane based on perfluorinated polymer using quantum beam induced grafting technique , 2011 .

[183]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[184]  Hamdani Saidi,et al.  Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films. I. Effect of grafting conditions and properties of the grafted films , 2000 .

[185]  E. Shamsaei,et al.  Preparation and characterization of phosphoric acid composite membrane by radiation induced grafting of 4‐vinylpyridine onto poly(ethylene‐co‐tetrafluoroethylene) followed by phosphoric acid doping , 2013 .

[186]  Wiebke Becker,et al.  Proton Exchange Membranes by Irradiation Induced Grafting of Styrene Onto FEP and ETFE: Influences of the Crosslinker N, N‐Methylene‐bis‐acrylamide , 2002 .

[187]  K. Kontturi,et al.  Proton transport in radiation-grafted membranes for fuel cells as detected by SECM , 2003 .

[188]  B. Gupta,et al.  Materials research aspects of organic solid proton conductors , 1993 .

[189]  D. Stamatialis,et al.  Anion-exchange membranes containing diamines: preparation and stability in alkaline solution , 2004 .

[190]  B. Pivovar,et al.  Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes , 2003 .

[191]  R. Slade,et al.  Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells , 1997 .

[192]  U. Gohs,et al.  Grafting of styrene into pre-irradiated fluoropolymer films: Influence of base material and irradiation temperature , 2010 .

[193]  Y. Maekawa,et al.  Fuel cell performance of polyetheretherketone-based polymer electrolyte membranes prepared by a two-step grafting method , 2008 .

[194]  E. Quartarone,et al.  PVDF and P(VDF-HFP)-based proton exchange membranes , 2004 .

[195]  Y. Jung,et al.  Spectroscopic and thermal degradation studies of polystyrene grafting onto poly(tetrafluoroethylene-co-hexafluoropropylene) films via electron-beam irradiation , 2009 .

[196]  Minghong G. Wu,et al.  Cation-exchange membranes by radiation-induced graft copolymerization of monomers onto HDPE , 2005 .

[197]  L. Gubler,et al.  Fuel Cell Membranes Based on Grafted and Post‐Sulfonated Glycidyl Methacrylate (GMA) , 2013 .

[198]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[199]  Y. Nho,et al.  Synthesis of poly((vinyloxy)ethanesulfonic acid)‐grafted ETFE membrane via radiation grafting and its characterization , 2012 .

[200]  T. Schmidt,et al.  Influence of Cross-Linking on Performance of Radiation-Grafted and Sulfonated FEP 25 Membranes in H 2 ­ O 2 PEFC , 2005 .

[201]  E. Quartarone,et al.  PBI-based composite membranes for polymer fuel cells , 2010 .

[202]  R. Varcoe Alkaline Anion Exchange Membranes for Fuel Cells- A Patent Review , 2011 .

[203]  S. A. Gürsel,et al.  Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylene-alt-tetrafluoroethylene) for low temperature fuel cells , 2005 .

[204]  Microstructured proton-conducting membranes by synchrotron-radiation-induced grafting , 2008 .

[205]  Synthesis and characteristics of radiation‐grafted membranes for fuel cell electrolytes , 2003 .

[206]  B. Gupta,et al.  Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I: Influence of synthesis conditions , 1994 .

[207]  M. Nasef,et al.  Composite proton conducting membrane by radiation-induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetrafluoroethylene) and phosphoric acid doping , 2013 .

[208]  A. Chapiro,et al.  Preparation of ion-exchange membranes by grafting acrylic acid into pre-irradiated polymer films—1. grafting into polyethylene , 1989 .

[209]  K. V. Lovell,et al.  Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid , 2002 .

[210]  T. Yamaki,et al.  Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications , 2006 .

[211]  Y. Lee,et al.  Effect of Electron Beam Irradiation on Poly(vinylidene fluoride) Films at the Melting Temperature , 2006 .

[212]  John A. Brunea,et al.  Preparation of perfluorinated ion exchange membranes and their application in acid recovery , 1992 .

[213]  M. Washio,et al.  Surface analysis of the proton exchange membranes prepared by pre-irradiation induced grafting of styrene/divinylbenzene into crosslinked thin PTFE membranes , 2005 .

[214]  M. Torkkeli,et al.  Structure and properties of sulfonated poly [(vinylidene fluoride)–g-styrene] norous membranes porous membranes , 1996 .

[215]  T. Yamaki,et al.  Preparation of sulfonated crosslinked PTFE-graft-poly(alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing , 2005 .

[216]  Joseph Jagur-Grodzinski,et al.  Polymeric materials for fuel cells: concise review of recent studies† , 2007 .

[217]  H. Ohya,et al.  Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery , 1997 .

[218]  Nam Hoon Kim,et al.  Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges , 2011 .

[219]  Franciska Sundholm,et al.  Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy , 2000 .

[220]  Maolin Zhai,et al.  Modification of ultrathin polyetheretherketone film for application in direct methanol fuel cells , 2009 .

[221]  R. Slade,et al.  Poly(ethylene-co-tetrafluoroethylene)-Derived Radiation-Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells , 2007 .

[222]  R. Hollandsworth,et al.  Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens , 1991 .

[223]  T. Kallio,et al.  Relationship Between Methanol Permeability and Structure of Different Radiation‐Grafted Membranes , 2004 .

[224]  June Park,et al.  Graft-type polymer electrolyte membranes for fuel cells prepared through radiation-induced graft polymerization into alicyclic polybenzimidazoles , 2013 .

[225]  Adolphe Chapiro,et al.  Crosslinked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films , 1996 .

[226]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[227]  G. Capannelli,et al.  Asymmetric polivinylidenfluoride (pvdf) radiation grafted membranes: preparation and performance in reverse osmosis application , 1981 .

[228]  Arshad Ahmad,et al.  Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method , 2011 .

[229]  A. Wokaun,et al.  Crosslinker Effect on Fuel Cell Performance Characteristics of ETFE Based Radiation Grafted Membranes , 2007 .

[230]  M. Guiver,et al.  Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application ☆: II. Sulfonation and characterization , 2009 .

[231]  Maolin Zhai,et al.  Synthesis of fluorinated polymer electrolyte membranes by radiation grafting and atom transfer radical polymerization techniques , 2009 .

[232]  Y. Nho,et al.  Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane , 2012 .

[233]  R. Slade,et al.  An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells , 2006 .

[234]  S. Nakao,et al.  Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell , 2003 .

[235]  M. Nasef,et al.  Cation exchange membranes by radiation‐induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes , 2000 .

[236]  P. C. Deb,et al.  Proton exchange membranes by grafting of styrene–acrylic acid onto FEP by preirradiation technique. I. Effect of synthesis conditions , 2003 .

[237]  M. Nasef,et al.  Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell , 2009 .

[238]  Maolin Zhai,et al.  Hydrocarbon proton-conductive membranes prepared by radiation-grafting of styrenesulfonate onto aromatic polyamide films , 2009 .

[239]  A. Oshima,et al.  Radiation induced crosslinking of polytetrafluoroethylene , 1995 .

[240]  M. Patri,et al.  Synthesis and characterization of SPE membrane based on sulfonated FEP‐g‐acrylic acid by radiation induced graft copolymerization for PEM fuel cell , 2004 .

[241]  Lorenz Gubler,et al.  Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells , 2011 .

[242]  T. Kallio,et al.  Electrochemical characterization of radiation-grafted ion-exchange membranes based on different matrix polymers , 2002 .

[243]  U. Lappan,et al.  Sulfonation of fluoropolymers induced by electron beam irradiation , 1999 .

[244]  F. Cardona,et al.  Copolymers obtained by the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) substrates. 1. Preparation and structural investigation , 2002 .

[245]  R. Slade,et al.  Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs , 2002 .

[246]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[247]  A. Zhu,et al.  Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells , 2010 .

[248]  R. Rohani,et al.  Synthesis of copolymer grafts containing sulfoalkyl and hydrophilic groups in polymer electrolyte membranes , 2012 .

[249]  Minghong G. Wu,et al.  Radiation‐induced grafting of acrylic acid and sodium styrene sulfonate onto high‐density polyethylene membranes. I. Effect of grafting conditions , 2006 .

[250]  R. Slade,et al.  An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. , 2006, Chemical communications.

[251]  Seongyop Lim,et al.  Long-term durability of radiation-grafted PFA-g-PSSA membranes for direct methanol fuel cells , 2013 .

[252]  Y. Maekawa,et al.  Preparation and properties of sulfonated ETFE‐g‐polyvinyltoluene membranes for application in fuel cells , 2006 .

[253]  B. Pivovar,et al.  Decomposition pathways of an alkaline fuel cell membrane material component via evolved gas analysis , 2008 .

[254]  Wiebke Becker,et al.  Properties of polymer exchange membranes from irradiation introduced graft polymerization , 2001 .

[255]  S. A. Gürsel,et al.  Radiation-Grafted Membranes Using a Trifluorostyrene Derivative , 2006 .

[256]  S. Alkan Gürsel,et al.  Influence of Radiation‐Induced Grafting Process on Mechanical Properties of ETFE‐Based Membranes for Fuel Cells , 2009 .

[257]  M. Washio,et al.  Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting , 2006 .

[258]  T. Momose,et al.  Radiation grafting of α,β,β‐trifluorostyrene onto poly(ethylene–tetrafluoroethylene) film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness , 1989 .

[259]  T. Zhao,et al.  Anion-exchange membrane direct ethanol fuel cells: Status and perspective , 2010 .

[260]  Y. Maekawa,et al.  Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells , 2010 .

[261]  B. Améduri,et al.  Polymeric materials as anion-exchange membranes for alkaline fuel cells , 2011 .

[262]  M. Nasef,et al.  Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis , 2006 .

[263]  Waldemar Bujalski,et al.  High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review , 2013 .

[264]  B. Gupta,et al.  Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes , 1996 .

[265]  Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films , 2014 .

[266]  P. Shen,et al.  Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts , 2006 .

[267]  G. Sundholm,et al.  Effect of crosslinking on the physicochemical properties of proton conducting PVDF-g-PSSA membranes , 1999 .

[268]  F. Sundholm,et al.  Sulfonation of styrene-grafted poly(vinylidene fluoride) films , 2001 .

[269]  A. Wokaun,et al.  Materials for polymer electrolyte fuel cells , 2004 .

[270]  Y. Maekawa,et al.  Preparation of PTFE-based fuel cell membranes by combining latent track formation technology with graft polymerization , 2009 .

[271]  W. Jaeger,et al.  Synthetic polymers with quaternary nitrogen atoms—Synthesis and structure of the most used type of cationic polyelectrolytes , 2010 .

[272]  S. C. Zhang,et al.  The Microstructure and Character of the PVDF-g-PSSA Membrane Prepared by Solution Grafting , 2003 .

[273]  M. Nasef,et al.  Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) films. II. Properties of sulfonated membranes , 2000 .

[274]  Shinsuke Suzuki,et al.  Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. , 2006, Journal of the American Chemical Society.

[275]  M. Nasef,et al.  Optimization and kinetics of phosphoric acid doping of poly(1-vinylimidazole)-graft-poly(ethylene-co-tetrafluorethylene) proton conducting membrane precursors , 2013 .

[276]  L. Gubler Polymer Design Strategies for Radiation‐Grafted Fuel Cell Membranes , 2014 .

[277]  M. Nasef,et al.  Thermal degradation behaviour of radiation grafted FEP-g-polystyrene sulfonic acid membranes , 2000 .

[278]  Tabata Yoneho,et al.  Temperature effects on radiation induced phenomena in polymers , 1996 .

[279]  Subbarao Surampudi,et al.  High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)–poly(vinylidene fluoride) (PVDF) composite membranes , 2004 .

[280]  P. Jacobsson,et al.  Preparation of proton-conducting membranes by direct sulfonation. 1. Effect of radicals and radical decay on the sulfonation of poly(vinyl fluoride) films , 2003 .

[281]  M. Washio,et al.  Fabrication of PEFC membrane based on PTFE/FEP polymer-alloy using radiation-grafting , 2005 .

[282]  T. Kallio,et al.  Versatile Synthetic Route to Tailor-Made Proton Exchange Membranes for Fuel Cell Applications by Combination of Radiation Chemistry of Polymers with Nitroxide-Mediated Living Free Radical Graft Polymerization , 2004 .

[283]  Keith Scott,et al.  Performance of the direct methanol fuel cell with radiation-grafted polymer membranes , 2000 .

[284]  W. Colella,et al.  Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles , 2005, Science.

[285]  B. Hwang,et al.  Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells , 2012 .

[286]  T. Kallio,et al.  Confocal Raman Spectroscopic Investigations of Fuel Cell Tested Sulfonated Styrene Grafted Poly(vinylidene fluoride) Membranes , 2002 .

[287]  Y. Nho,et al.  Radiation grafting of binary monomers for the preparation of organic/inorganic hybrid membrane for proton exchange membrane fuel cell application , 2012, Macromolecular Research.

[288]  Masaru Yoshida,et al.  Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications , 2003 .

[289]  M. Nasef,et al.  Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films , 2004 .

[290]  J. Maier,et al.  On the swelling properties of proton conducting membranes for direct methanol fuel cells , 2007 .

[291]  M. Washio,et al.  Synthesis and characterization of PEFC membranes based on fluorinated-polymer-alloy using pre-soft-EB grafting method , 2007 .

[292]  Z. Florjańczyk,et al.  Radiation-modified Nafion membranes for methanol fuel cells , 2001 .

[293]  T. Yamaki,et al.  Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes , 2006 .

[294]  G. Schmidt-naake,et al.  Synthesis of Proton Exchange Membranes with Pendent Phosphonic Acid Groups by Irradiation Grafting of VBC , 2005 .

[295]  F. Alloin,et al.  Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties , 2007 .

[296]  T. Xie,et al.  A kinetic model for the chemical degradation of perfluorinated sulfonic acid ionomers: Weak end groups versus side chain cleavage , 2007 .

[297]  M. Nasef,et al.  Acid‐synergized grafting of sodium styrene sulfonate onto electron beam irradiated‐poly(vinylidene fluoride) films for preparation of fuel cell membrane , 2010 .

[298]  T. Kallio,et al.  Effect of the Initial Matrix Material on the Structure of Radiation-Grafted Ion-Exchange Membranes: Wide-angle and Small-Angle X-Ray Scattering Studies , 2002 .

[299]  T. Terai,et al.  TEMPO addition into pre-irradiated fluoropolymers and living-radical graft polymerization of styrene for preparation of polymer electrolyte membranes , 2010 .

[300]  T. Kallio,et al.  Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers , 2003 .

[301]  M. Bartolozzi,et al.  A Comparative Investigation of Proton and Methanol Transport in Fluorinated Ionomeric Membranes , 2000 .

[302]  M. Karjalainen,et al.  Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes , 1997 .

[303]  V. Kabanov Preparation of Polymer Membranes for Fuel Cells by Radiation Graft Polymerization , 2004 .

[304]  Qiang Zhang,et al.  Novel side-chain-type cardo poly(aryl ether sulfone) bearing pendant sulfoalkyl groups for proton ex , 2011 .

[305]  B. Schnyder,et al.  Surface modification of radiation‐grafted polymer films and membranes by crosslinking , 2007 .

[306]  K. Scott,et al.  Evaluation of new ion exchange membranes for direct borohydride fuel cells , 2007 .

[307]  M. Nasef,et al.  Cation Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene onto PFA Copolymer Films. III. Thermal Stability of the Membranes , 2000 .

[308]  Jaeweon Cho,et al.  Preparation and characterization of LDPE/polyvinylbenzyl trimethyl ammonium salts anion-exchange membrane , 2003 .

[309]  K. Oguro,et al.  Study of Anode Catalysts and Fuel Concentration on Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells , 2009 .

[310]  M. Torkkeli,et al.  The state of water and the nature of ion clusters in crosslinked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride) , 2000 .

[311]  Junhwa Shin,et al.  A study on the characterization of FEP-g-PVBSA membranes as polymer electrolytes for direct methanol fuel cells , 2011 .

[312]  M. Washio,et al.  Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes , 2005 .

[313]  K. Scott,et al.  Grafted polymer electrolyte membrane for direct methanol fuel cells , 2005 .

[314]  Y. Nho,et al.  Preparation and characterization of a poly(vinylbenzyl sulfonic acid)-grafted FEP membrane , 2010 .

[315]  H. Kubota,et al.  Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications , 2004 .

[316]  A. Wokaun,et al.  Cross-Linker Effect in ETFE-Based Radiation-Grafted Proton-Conducting Membranes I. Properties and Fuel Cell Performance Characteristics , 2008 .

[317]  Masaru Yoshida,et al.  Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films , 2006 .

[318]  F. Sundholm,et al.  Synthesis and properties of sulfonated and crosslinked poly[(vinylidene fluoride)-graft-styrene] membranes , 1998 .

[319]  G. Ellinghorst,et al.  Radiation initiated grafting on fluoro polymers for membrane preparation , 1981 .

[320]  M. Washio,et al.  Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films , 2005 .

[321]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .