Multi-Timescale Collaborative Tracking

We present the multi-timescale collaborative tracker for single object tracking. The tracker simultaneously utilizes different types of “forces”, namely attraction, repulsion and support, to take advantage of their complementary strengths. We model the three forces via three components that are learned from the sample sets with different timescales. The long-term descriptive component attracts the target sample, while the medium-term discriminative component repulses the target from the background. They are collaborated in the appearance model to benefit each other. The short-term regressive component combines the votes of the auxiliary samples to predict the target’s position, forming the context-aware motion model. The appearance model and the motion model collaboratively determine the target state, and the optimal state is estimated by a novel coarse-to-fine search strategy. We have conducted an extensive set of experiments on the standard 50 video benchmark. The results confirm the effectiveness of each component and their collaboration, outperforming current state-of-the-art methods.

[1]  Qiang Ji,et al.  Spatio-Temporal Context for Robust Multitarget Tracking , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Peter H. Tu,et al.  Activity Recognition using Visual Tracking and RFID , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[4]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jason Weston,et al.  Solving multiclass support vector machines with LaRank , 2007, ICML '07.

[6]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Luc Van Gool,et al.  Hough Forests for Object Detection, Tracking, and Action Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Junzhou Huang,et al.  Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Nanning Zheng,et al.  Description-Discrimination Collaborative Tracking , 2014, ECCV.

[10]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Zhibin Hong,et al.  Tracking Using Multilevel Quantizations , 2014, ECCV.

[12]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[14]  Dong Yi,et al.  Robust Online Learned Spatio-Temporal Context Model for Visual Tracking , 2014, IEEE Transactions on Image Processing.

[15]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[16]  Junseok Kwon,et al.  Robust visual tracking using autoregressive hidden Markov Model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Shuicheng Yan,et al.  Robust Object Tracking with Online Multi-lifespan Dictionary Learning , 2013, 2013 IEEE International Conference on Computer Vision.

[19]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[20]  Philippe C. Cattin,et al.  Tracking the invisible: Learning where the object might be , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Bernhard Schölkopf,et al.  A Short Introduction to Learning with Kernels , 2002, Machine Learning Summer School.

[26]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[27]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Nanning Zheng,et al.  Constructing Adaptive Complex Cells for Robust Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Seunghoon Hong,et al.  Visual Tracking by Sampling Tree-Structured Graphical Models , 2014, ECCV.

[31]  Xiaogang Wang,et al.  Learning Collective Crowd Behaviors with Dynamic Pedestrian-Agents , 2014, International Journal of Computer Vision.

[32]  David Suter,et al.  Adaptive Object Tracking Based on an Effective Appearance Filter , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[35]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[36]  Antoine Bordes,et al.  Sequence Labelling SVMs Trained in One Pass , 2008, ECML/PKDD.

[37]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Shai Avidan,et al.  Extended Lucas-Kanade Tracking , 2014, ECCV.

[39]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[40]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[41]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[43]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[44]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[46]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[47]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Antoine Bordes,et al.  The Huller: A Simple and Efficient Online SVM , 2005, ECML.