Data Fusion for Reconstruction of a DTM, Under a Woodland Canopy, From Airborne L-band InSAR

This paper investigates the utility of different parameters from polarimetric interferometric synthetic aperture radar (InSAR) data for the identification of ground pixels in a woodland area to enable accurate digital terrain model (DTM) generation from the InSAR height of the selected ground hit pixels. The parameters assessed include radar backscatter, interferometric coherence, surface scattering proportion (based on Freeman-Durden decomposition), and standard deviation of the interferometric height. The method is applied to Monks Wood, a small seminatural deciduous woodland in Cambridgeshire, U.K., using airborne E-SAR data collected in June 2000. The 1428 variations of SAR-derived terrain models are validated with theodolite data and a light detection and ranging-derived DTM. The results show that increasing the amount of data used in the DTM creation does not necessarily increase the accuracy of the final DTM. The most accurate method, for the whole wood, was a fixed-window minimum-filtering algorithm, followed by a mean filter. However, for a spatial subset of the area using the upsi3 backscattering coefficient to identify ground pixels outperforms the minimum filtering method. The findings suggest that backscatter information may often be undervalued in estimating terrain height under forest canopies

[1]  R. C. Steele,et al.  Monks Wood : a nature reserve record , 1974 .

[2]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Marc L. Imhoff,et al.  A theoretical analysis of the effect of forest structure on synthetic aperture radar backscatter and the remote sensing of biomass , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[6]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[8]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[10]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[11]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Nadine Gobron,et al.  Radiation transfer model intercomparison (RAMI) exercise , 2001 .

[13]  E. Beinat,et al.  The long road from promises to reality: issues in the roll out of commercial location services , 2002 .

[14]  Shelley A. Hinsley,et al.  Mapping forest pattern and structure at a landscape scale using airborne laser scanning technology. , 2002 .

[15]  Erich Meier,et al.  Multi-baseline polarimetric SAR interferometry—first experimental spaceborne and airborne results , 2002 .

[16]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[17]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[18]  C. W. Chen,et al.  Radar stereo- and interferometry-derived digital elevation models: comparison and combination using Radarsat and ERS-2 imagery , 2003 .

[19]  W. W. Carson,et al.  Accuracy of a high-resolution lidar terrain model under a conifer forest canopy , 2003 .

[20]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[21]  W. W. Carson,et al.  A COMPARISON OF FOREST CANOPY MODELS DERIVED FROM LIDAR AND INSAR DATA IN A PACIFIC NORTHWEST CONIFER FOREST , 2003 .

[22]  Lu Su,et al.  Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase , 2004 .

[23]  B. Law,et al.  Forest Attributes from Radar Interferometric Structure and Its Fusion with Optical Remote Sensing , 2004 .

[24]  C. Vincent Tao,et al.  An Initial Study on Automatic Reconstruction of Ground DEMs from Airborne IfSAR DSMs , 2004 .

[25]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[26]  George Vosselman,et al.  Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds , 2004 .

[27]  Laurent Ferro-Famil,et al.  Mapping Dry Snow in Mountain Regions from Fully Polarimetric SAR Data , 2005 .

[28]  J. A. Tullis,et al.  An Evaluation of Lidar-derived Elevation and Terrain Slope in Leaf-off Conditions , 2005 .

[29]  Masanobu Shimada,et al.  The Polarimetric and Interferometric Potential of ALOS PALSAR , 2005 .

[30]  John Trinder,et al.  Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection , 2005, Inf. Fusion.

[31]  T. J. Farrugia,et al.  The Shuttle Radar Topography Mission-Data Validation and Applications , 2006 .

[32]  Iain H. Woodhouse,et al.  Forest height retrieval from commercial X-band SAR products , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Laurent Ferro-Famil,et al.  Scattering-model-based speckle filtering of polarimetric SAR data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Irena Hajnsek,et al.  Polarimetric and interferometric characterization of coherent scatterers in urban areas , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Irena Hajnsek,et al.  PolInSAR analysis of X-band data over vegetated and urban areas , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[36]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .