Long range failure-tolerant entanglement distribution

We introduce a protocol to distribute entanglement between remote parties. Our protocol is based on a chain of repeater stations, and exploits topological encoding to tolerate very high levels of defects and errors. The repeater stations may employ probabilistic entanglement operations which usually fail; ours is the first protocol to explicitly allow for technologies of this kind. Given an error rate between stations in excess of 10%, arbitrarily long range high fidelity entanglement distribution is possible even if the heralded failure rate within the stations is as high as 99%, providing that unheralded errors are low (order 0.01%).

[1]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[2]  L-M Duan,et al.  Efficient quantum computation with probabilistic quantum gates. , 2005, Physical review letters.

[3]  Simon C Benjamin,et al.  Fault tolerant quantum computation with nondeterministic gates. , 2010, Physical review letters.

[4]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[5]  S. Perseguers,et al.  Fidelity threshold for long-range entanglement in quantum networks , 2009, 0910.1459.

[6]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[7]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[8]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[9]  R. Raussendorf,et al.  Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.

[10]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[11]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[12]  J. T. Chalker,et al.  Two-dimensional random-bond Ising model, free fermions, and the network model , 2002 .

[13]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[14]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[15]  Jason M. Smith,et al.  Prospects for measurement‐based quantum computing with solid state spins , 2009, 0901.3092.

[16]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[17]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[18]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[19]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[20]  Joseph Fitzsimons,et al.  Probabilistic growth of large entangled states with low error accumulation. , 2009, Physical review letters.

[21]  University of Michigan,et al.  Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices , 1998 .

[22]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[23]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[24]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[25]  Peter Maunz,et al.  Quantum networking with photons and trapped atoms (Invited) , 2007 .

[26]  L-M Duan,et al.  Scalable generation of graph-state entanglement through realistic linear optics. , 2006, Physical review letters.

[27]  Tetsuo Matsui,et al.  Phase structure of the random plaquette Z(2) gauge model: Accuracy threshold for a toric quantum memory , 2004, quant-ph/0401101.

[28]  Silvano Donati,et al.  LASER & PHOTONICS REVIEWS , 2013 .

[29]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[30]  D Cavalcanti,et al.  Distribution of entanglement in large-scale quantum networks , 2012, Reports on progress in physics. Physical Society.

[31]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .