An optimal control approach for the registration of image time-series

This paper discusses an optimal control approach for the registration of image time-series (growth modeling). It combines and augments work on an optimal control formulation to optical flow with theory from large-displacement diffeomorphic image registration. The unification of the two viewpoints leads to (i) a more efficient computation of the gradient of the optimization problem, (ii) an easier numerical implementation, and (iii) an intuitive interpretation of the adjoint equation underlying the optimization problem. Further, a novel formulation for the unbiased estimation of image correspondences across time is proposed.

[1]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[2]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[3]  Rama Chellappa,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Matching Shape Sequences in Video with Applications in Human Movement Analysis. Ieee Transactions on Pattern Analysis and Machine Intelligence 2 , 2022 .

[4]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[5]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Bibliography , 1992 .

[6]  Stefano Soatto,et al.  Deformotion: Deforming Motion, Shape Average and the Joint Registration and Approximation of Structures in Images , 2003, International Journal of Computer Vision.

[7]  Stefano Soatto,et al.  Tracking deformable moving objects under severe occlusions , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[9]  Maneesh Kumar Singh,et al.  State-of-the-art on spatio-temporal information-based video retrieval , 2009, Pattern Recognit..

[10]  Nicolas Papadakis,et al.  Dynamically consistent optical flow estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Nicolas Papadakis,et al.  A Variational Technique for Time Consistent Tracking of Curves and Motion , 2008, Journal of Mathematical Imaging and Vision.

[12]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[13]  Ali R. Khan,et al.  Symmetric Data Attachment Terms for Large Deformation Image Registration , 2007, IEEE Transactions on Medical Imaging.

[14]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[15]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[16]  Jake K. Aggarwal,et al.  Nonrigid Motion Analysis: Articulated and Elastic Motion , 1998, Comput. Vis. Image Underst..

[17]  Michael Ghil,et al.  Dynamic Meteorology: Data Assimilation Methods , 1981 .

[18]  Anthony J. Yezzi,et al.  Coarse-to-Fine Segmentation and Tracking Using Sobolev Active Contours , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  A. C. Bovik,et al.  Spatio-temporal tracking of material shape change via multi-dimensional splines , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[20]  Kazufumi Ito,et al.  Optimal Control Formulation for Determining Optical Flow , 2002, SIAM J. Sci. Comput..

[21]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[22]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[23]  Daniel Rueckert,et al.  Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences , 2004, FIMH.

[24]  Karl Krissian,et al.  Symmetric Optical Flow , 2007, EUROCAST.

[25]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[26]  Ali R. Khan,et al.  Representation of time-varying shapes in the large deformation diffeomorphic framework , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  Istvan Csapo,et al.  Image registration framework for large-scale longitudinal MRI data sets: strategy and validation. , 2007, Magnetic resonance imaging.

[28]  T. Bewley,et al.  A computational framework for the regularization of adjoint analysis in multiscale PDE systems , 2004 .

[29]  Dinggang Shen,et al.  Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping , 2004, NeuroImage.

[30]  Michael Unser,et al.  Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation , 2005, IEEE Transactions on Medical Imaging.