Dipole moment enhancement in molecular crystals from X-ray diffraction data.

Although reliable determination of the molecular dipole moment from experimental charge density analyses on molecular crystals is a challenging undertaking, these values are becoming increasingly common experimental results. We collate all known experimental determinations and use this database to identify broad trends in the dipole moment enhancements implied by these measurements as well as outliers for which enhancements are pronounced. Compelling evidence emerges that molecular dipole moments from X-ray diffraction data can provide a wealth of information on the change in the molecular charge distribution that results from crystal formation. Most importantly, these experiments are unrivalled in their potential to provide this information in such detail and deserve to be exploited to a much greater extent. The considerable number of experimental determinations now available has enabled us to pinpoint those studies that merit further attention, either because they point unequivocally to a considerable enhancement in the crystal (of 50 % or more), or because the experimental determinations suggest enhancements of 100 % or more--much larger than independent theoretical estimates. In both cases further detailed experimental and theoretical studies are indicated.

[1]  T. Row,et al.  Topological Analysis of Charge Density Distribution in Concomitant Polymorphs of 3-Acetylcoumarin, A Case of Packing Polymorphism , 2006 .

[2]  L. Lo Presti,et al.  On the interplay between CH...O and OH...O interactions in determining crystal packing and molecular conformation: an experimental and theoretical charge density study of the fungal secondary metabolite austdiol (C12H12O5). , 2006, The journal of physical chemistry. B.

[3]  M. Spackman,et al.  Dipole and quadrupole moments of molecules in crystals: a novel approach based on integration over Hirshfeld surfaces. , 2006, The Journal of chemical physics.

[4]  Zobel,et al.  Accurate experimental electronic properties of dl-proline monohydrate obtained within 1 Day , 1998, Science.

[5]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[6]  Chemical bonding in energetic materials: β-NTO , 2001 .

[7]  M. Spackman,et al.  Energies of molecular interactions from bragg diffraction data , 1988 .

[8]  Zyss,et al.  Assessment of the polarizabilities ( alpha, beta ) of a nonlinear optical compound , 1996, Physical review. B, Condensed matter.

[9]  M. Hursthouse,et al.  Experimental and theoretical determination of electronic properties in l-dopa , 1995 .

[10]  C. Lecomte,et al.  Electron density and electrostatic properties of two peptide molecules: tyrosyl-glycyl-glycine monohydrate and glycyl-aspartic acid dihydrate. , 2000, Acta crystallographica. Section B, Structural science.

[11]  D. Hibbs,et al.  Insights into bonding and hydrogen bond directionality in thioacetamide from the experimental charge distribution , 2002 .

[12]  H. Weber,et al.  Charge density in the crystal structure of γ-aminobutyric acid at 122 K – an intramolecular methylene H bridge , 1983 .

[13]  M. Spackman,et al.  Anisotropic displacement parameters for H atoms using an ONIOM approach. , 2006, Acta crystallographica. Section B, Structural science.

[14]  Peter Turner,et al.  Reassessment of large dipole moment enhancements in crystals: a detailed experimental and theoretical charge density analysis of 2-methyl-4-nitroaniline. , 2006, The journal of physical chemistry. A.

[15]  P. Schweiss,et al.  Structural and vibrational analysis of 3-methyl-4-nitropyridine-N-oxide: neutron and X-ray diffraction studies , 1988 .

[16]  P. Luger,et al.  Einblick in die elektronische Struktur eines antithrombotischen Wirkstoffs durch hochaufgelöste Röntgenbeugung , 2001 .

[17]  P. Coppens,et al.  On the evaluation of molecular dipole moments from multipole refinement of X-ray diffraction data , 1999 .

[18]  Guang Wu,et al.  X-ray charge density study of p-amino-p′-nitrobiphenyl at 20 K using a CCD area detector and synchrotron radiation: a very large dipole moment enhancement in the solid state , 1999 .

[19]  Scott R. Wilson,et al.  Experimental, Hartree-Fock, and Density Functional Theory Investigations of the Charge Density, Dipole Moment, Electrostatic Potential, and Electric Field Gradients in L-Asparagine Monohydrate , 2000 .

[20]  Gérard Vergoten,et al.  Electron Charge Density Distribution from X-ray Diffraction Study of the M-Nitrophenol Compound in the Monoclinic Form , 2007, International Journal of Molecular Sciences.

[21]  R. Stewart Electrostatic Properties of Molecules from Diffraction Data , 1991 .

[22]  R. Stewart Electron population analysis with generalized x‐ray scattering factors: Higher multipoles , 1973 .

[23]  T. N. Guru Row,et al.  Intra- and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis. , 2006, Acta crystallographica. Section B, Structural science.

[24]  H. Kessler,et al.  Reproducability and transferability of topological properties; experimental charge density of the hexapeptide cyclo-(D,L-Pro)2-(L-Ala)4 monohydrate. , 2002, Acta crystallographica. Section B, Structural science.

[25]  B. Craven,et al.  Charge density study of 2-pyridone. , 1998, Acta crystallographica. Section B, Structural science.

[26]  M. Spackman Molecular Electric Moments from X-Ray Diffraction Data , 1992 .

[27]  M. Waller,et al.  Experimental and theoretical charge density studies of tetrafluorophthalonitrile and tetrafluoroisophthalonitrile , 2004 .

[28]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[29]  A. Thakkar,et al.  Double and quadruple zeta contracted Gaussian basis sets for hydrogen through neon , 1993 .

[30]  P. Luger,et al.  Electronic Insight into an Antithrombotic Agent by High-Resolution X-Ray Crystallography. , 2001, Angewandte Chemie.

[31]  Howard,et al.  Experimental evidence for the amino-group non-planarity in nitroanilines: neutron diffraction study of 2-methyl-5-nitroaniline at 100 K. , 1999, Acta crystallographica. Section B, Structural science.

[32]  Tejender S. Thakur,et al.  Five varieties of hydrogen bond in 1-formyl-3-thiosemicarbazide: an electron density study. , 2006, Acta crystallographica. Section B, Structural science.

[33]  G. A. Jeffrey,et al.  The Application of Charge Density Research to Chemistry and Drug Design , 1991 .

[34]  J. Zyss,et al.  Electron density study by X-ray and neutron diffraction of an NLO compound: N-(4-nitrophenyl)-l-prolinol. Description of quadratic hyperpolarizability , 1995 .

[35]  J. Epstein,et al.  The charge density in imidazole by X-ray diffraction at 103 and 293 K , 1982 .

[36]  G. U. Kulkarni,et al.  An experimental charge density study of the effect of the noncentric crystal field on the molecular properties of organic NLO materials. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  G. U. Kulkarni,et al.  A charge density study of an intramolecular charge-transfer quinoid compound with strong NLO properties , 2001 .

[38]  Electron density study of 2H-chromene-2-thione. , 2002 .

[39]  M. Carducci,et al.  Experimental Charge Densities and Intermolecular Interactions: Electrostatic and Topological Analysis of DL-Histidine , 1999 .

[40]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[41]  T. Hahn International tables for crystallography , 2002 .

[42]  J. Ellena,et al.  Role of the hydrogen bonds in nitroanilines aggregation : charge density study of 2-methyl-5-nitroaniline. , 2001 .

[43]  Y. Nelyubina,et al.  Water clusters in crystal: Beyond the "hydrogen-bonding graphs". , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  C. Lecomte,et al.  Experimental and theoretical charge density of DL-alanyl-methionine. , 2001, Acta crystallographica. Section B, Structural science.

[45]  S. Swaminathan,et al.  Electrostatic properties of 1-methyluracil from diffraction data. , 1992, Acta crystallographica. Section B, Structural science.

[46]  D. Hibbs,et al.  X-N charge density analysis of the hydrogen bonding motif in 1-(2-hydroxy-5-nitrophenyl)ethanone. , 2003, Organic & biomolecular chemistry.

[47]  R. Boese,et al.  Single-Crystal Structure and Electron Density Distribution of Ammonia at 160 K on the Basis of X-ray Diffraction Data , 1997 .

[48]  Guang Wu,et al.  Use of X-ray Charge Densities in the Calculation of Intermolecular Interactions and Lattice Energies: Application to Glycylglycine, dl-Histidine, and dl-Proline and Comparison with Theory , 2000 .

[49]  P. Luger,et al.  Charge Density and Topological Analysis of Pentafluorobenzoic Acid , 2001 .

[50]  P. Coppens,et al.  Finding optimal radial-function parameters for S atoms in the Hansen-Coppens multipole model through refinement of theoretical densities. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[51]  Mark P Waller,et al.  A new orbital-based model for the analysis of experimental molecular charge densities: an application to (Z)-N-methyl-C-phenylnitrone. , 2005, Physical chemistry chemical physics : PCCP.

[52]  Michael B. Hursthouse,et al.  Experimental and theoretical study of the charge density in 2‐methyl‐4‐nitroaniline , 1992 .

[53]  Peter Turner,et al.  Experimental and theoretical charge density study of the neurotransmitter taurine. , 2003, Chemistry.

[54]  P. Coppens,et al.  Anisotropic atom–atom potentials from X-ray charge densities: application to intermolecular interactions and lattice energies in some biological and nonlinear optical materials , 2000 .

[55]  C. Lecomte,et al.  Experimental charge density and electrostatic potential of glycyl-L-threonine dihydrate. , 2000, Acta crystallographica. Section B, Structural science.

[56]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[57]  S. Swaminathan,et al.  Electrostatic properties of phosphorylethanolamine at 123 K from crystal diffraction , 1984 .

[58]  J. Zyss,et al.  The molecular dipole moment of the non-linear optical 3-methyl 4-nitropyridine N-oxide molecule: X-ray diffraction and semi-empirical studies , 1996 .

[59]  M. Spackman,et al.  The use of dipole lattice sums to estimate electric fields and dipole moment enhancement in molecular crystals , 2007 .

[60]  E. Stevens,et al.  Experimental electron density distributions of hydrogen bonds. High‐resolution study of α‐oxalic acid dihydrate at 100 K , 1980 .

[61]  The change in the X-ray dipole moment as a quantitative measure of the polarizing effect of the molecular environment: application to a complex of p-amino-p′-nitrobiphenyl with triphenylphosphine oxide , 1999 .

[62]  Electrostatic properties of cytosine monohydrate from diffraction data. , 1990, Acta crystallographica. Section B, Structural science.

[63]  G. McIntyre,et al.  X-ray and neutron diffraction studies of the non-linear optical compounds MBANP and MBADNP at 20 K: charge-density and hydrogen-bonding analyses. , 2002, Acta crystallographica. Section B, Structural science.

[64]  T. Koetzle,et al.  The experimental charge density in sulfur‐containing molecules. A study of the deformation electron density in sulfamic acid at 78 K by X‐ray and neutron diffraction , 1977 .

[65]  G. McIntyre,et al.  Charge-density study of the nonlinear optical precursor DED-TCNQ at 20 K. , 2002 .

[66]  P. Luger,et al.  TOPOLOGICAL ANALYSIS OF THE EXPERIMENTAL ELECTRON DENSITIES OF AMINO ACIDS. 1. D, L-ASPARTIC ACID AT 20 K , 1998 .

[67]  Larsen,et al.  Evaluation of the solid state dipole moment and pyroelectric coefficient of phosphangulene by multipolar modeling of X-ray structure factors , 2000, Chemistry.

[68]  H. Hope,et al.  An X‐ray determination of the charge deformation density in 2‐cyanoguanidine , 1980 .

[69]  M. Lehmann,et al.  11K charge density study of 2,5-diaza-1,6-dioxa-6a-thiapentalene containing a short nonbonded S.cntdot..cntdot..cntdot.O contact , 1989 .

[70]  T. N. Guru Row,et al.  Exploring the lower limit in hydrogen bonds: analysis of weak C-H...O and C-H...pi interactions in substituted coumarins from charge density analysis. , 2005, The journal of physical chemistry. A.

[71]  Application of charge density methods to a protein model compound: Calculation of Coulombic intermolecular interaction energies from the experimental charge density , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Stewart,et al.  Theoretical and experimental studies of the charge density in urea , 1984 .

[73]  R. E. Marsh,et al.  Experimental Charge Density of α-Glycine at 23 K , 2000 .

[74]  N. Ghermani,et al.  Gradient vector field and properties of the experimental electrostatic potential: Application to ibuprofen drug molecule , 2002 .

[75]  R. Mathiesen,et al.  The charge density of urea from synchrotron diffraction data. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[76]  G. U. Kulkarni,et al.  Charge Density Study of the Polymorphs of p-Nitrophenol , 1998 .

[77]  P. G. Byrom,et al.  A novel definition of a molecule in a crystal , 1997 .

[78]  Gatti,et al.  Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density , 2000, Acta crystallographica. Section A, Foundations of crystallography.