Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment

An adjustment scheme for the regularization parameter of a Moreau-Yosida-based regularization, or relaxation, approach to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method utilizes error estimates of an associated finite element discretization of the regularized problems for the optimal selection of the regularization parameter in dependence on the mesh size of discretization and error estimates for the approximation error due to regularization. The theoretical results are verified numerically.

[1]  E. Casas L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .

[2]  Fredi Tröltzsch,et al.  Regular Lagrange Multipliers for Control Problems with Mixed Pointwise Control-State Constraints , 2005, SIAM J. Optim..

[3]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[4]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[5]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[6]  Karl Kunisch,et al.  Feasible and Noninterior Path-Following in Constrained Minimization with Low Multiplier Regularity , 2006, SIAM J. Control. Optim..

[7]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[8]  Michael Hinze,et al.  Numerical analysis of Lavrentiev-regularized state constrained elliptic control problems , 2006 .

[9]  Ridgway Scott,et al.  Optimal L°° Estimates for the Finite Element Method on Irregular Meshes* , 2010 .

[10]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[11]  Michael Hintermüller,et al.  Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems , 2007 .

[12]  Michael Hinze,et al.  A finite element approximation to elliptic control problems in the presence of control and state constraints , 2007 .

[13]  Michael Hinze,et al.  Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..

[14]  M. Kleiber,et al.  Selected Topics from the Mathematical Theory of Finite Elements , 1998 .

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  Fredi Tröltzsch,et al.  On two numerical methods for state-constrained elliptic control problems , 2007, Optim. Methods Softw..