A robustification of independent component analysis

Independent component analysis (ICA) is a statistical method for transforming multivariate data to components that are as independent of each other as possible. In recent years, several algorithms were proposed that perform well in many situations. But when the data contain outliers, these methods may lead to wrong conclusions. Here we robustify the well‐known FASTICA method by adding an outlier rejection rule, which does not assume elliptical symmetry. This modification is supported by simulations and real‐data examples. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  M. Hubert,et al.  A fast method for robust principal components with applications to chemometrics , 2002 .

[2]  Joos Vandewalle,et al.  Fetal electrocardiogram extraction by blind source subspace separation , 2000, IEEE Transactions on Biomedical Engineering.

[3]  Laurenz Wiskott,et al.  CuBICA: independent component analysis by simultaneous third- and fourth-order cumulant diagonalization , 2004, IEEE Transactions on Signal Processing.

[4]  Erkki Oja,et al.  An Experimental Comparison of Neural Algorithms for Independent Component Analysis and Blind Separation , 1999, Int. J. Neural Syst..

[5]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[6]  Fabien Szabo de Edelenyi Développement d'une nouvelle approche d'analyse des images spectroscopiques RMN : les images nosologiques , 2001 .

[7]  Lutgarde M. C. Buydens,et al.  Application of independent component analysis to 1H MR spectroscopic imaging exams of brain tumours , 2005 .

[8]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[9]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[10]  Mia Hubert,et al.  LIBRA: a MATLAB library for robust analysis , 2005 .

[11]  Paris Smaragdis,et al.  Evaluation of blind signal separation methods , 1999 .

[12]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[13]  E. Oja,et al.  Independent Component Analysis , 2013 .

[14]  M. Hubert,et al.  A Robust Measure of Skewness , 2004 .

[15]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[16]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[17]  J. Vandewalle,et al.  An introduction to independent component analysis , 2000 .

[18]  Mia Hubert,et al.  Robust measures of tail weight , 2006, Comput. Stat. Data Anal..

[19]  P. Filzmoser,et al.  Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data , 2000 .

[20]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .