Matrix time-extrapolation algorithm for solving semilinear parabolic problems

Abstract In this letter, we propose a fast matrix time-extrapolation algorithm to solve semilinear parabolic problems of Crank–Nicolson-based finite element scheme, which employs exact matrix values computed by integral at time levels m , m + p , m + 2 p to construct quadratic interpolation so that we can estimate matrix values at levels m + 2 p + 1 , m + 2 p + 2 , … , m + 3 p − 1 , then the matrix value is recalculated at the level m + 3 p . This process is performed iteratively, and finally, the calculation for matrices decreases to 1 ∕ p . The error estimate of this algorithm is proven, and numerical examples are established to support this theory.

[1]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[2]  Matthew A. Beauregard,et al.  An extrapolated splitting method for solving semi-discretized parabolic differential equations , 2015, Int. J. Comput. Math..

[3]  Achi Brandt,et al.  Parabolic Multigrid Revisited , 1991 .

[4]  Vo Anh Khoa,et al.  A finite difference scheme for nonlinear ultra-parabolic equations , 2015, Appl. Math. Lett..

[5]  Wolfgang Hackbusch,et al.  Fast Numerical Solution of Time-Periodic Parabolic Problems by a Multigrid Method , 1981 .

[6]  Qiang Du,et al.  Cascadic multigrid methods for parabolic problems , 2008 .

[7]  Chengjian Zhang,et al.  A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations , 2013, Appl. Math. Lett..

[8]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[9]  K. Pan,et al.  TIME-EXTRAPOLATION ALGORITHM (TEA) FOR LINEAR PARABOLIC PROBLEMS * , 2014 .

[10]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[11]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[12]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[13]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[14]  Junseok Kim,et al.  An unconditionally gradient stable numerical method for solving the Allen-Cahn equation , 2009 .