From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake.

In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.

[1]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[2]  P. Sozzani,et al.  Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. , 2008, Journal of the American Chemical Society.

[3]  Huanlei Wang,et al.  Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors , 2010 .

[4]  Seung Jae Yang,et al.  Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite , 2009 .

[5]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[6]  T. Kyotani,et al.  Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure , 2001 .

[7]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[8]  H. Kanoh,et al.  The addition of mesoporosity to activated carbon fibers by a simple reactivation process , 2005 .

[9]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[10]  Jing Li,et al.  RPM-1: a recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption. , 2003, Angewandte Chemie.

[11]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[12]  R. Mokaya,et al.  Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. , 2009, Journal of the American Chemical Society.

[13]  P. J. Ollivier,et al.  Effect of Micropore Topology on the Structure and Properties of Zeolite Polymer Replicas , 1997 .

[14]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[15]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[16]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[17]  R. T. Yang,et al.  Catalyzed hydrogen spillover for hydrogen storage. , 2009, Journal of the American Chemical Society.

[18]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[19]  A. Lu,et al.  Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures , 2004 .

[20]  R. Mokaya,et al.  Templated nanoscale porous carbons. , 2010, Nanoscale.

[21]  Robert Jones,et al.  Nanofiber toughened polyethylene composites , 2004 .

[22]  S. Tanaka,et al.  Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. , 2005, Chemical communications.

[23]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[24]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[25]  Y. Yamauchi,et al.  Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol , 2011 .

[26]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[27]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[28]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[29]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[30]  T. Bein,et al.  Conducting Carbon Wires in Ordered, Nanometer-Sized Channels , 1994, Science.

[31]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[32]  A. Vinu,et al.  Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. , 2009, Angewandte Chemie.

[33]  Wei Zhou,et al.  Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. , 2009, Journal of the American Chemical Society.

[34]  A. Yazaydin,et al.  Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  D. Olson,et al.  Zn(tbip) (H2tbip= 5-tert-butyl isophthalic acid): a highly stable guest-free microporous metal organic framework with unique gas separation capability. , 2006, Journal of the American Chemical Society.

[36]  Markus Antonietti,et al.  Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass , 2010, Advances in Materials.

[37]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[38]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[39]  E. Frąckowiak,et al.  Templated Mesoporous Carbons for Supercapacitor Application , 2005 .

[40]  M. Srinivasan,et al.  Preparation of Mesoporous High-Surface-Area Activated Carbon , 2000 .

[41]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[42]  J. Dahn,et al.  Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins , 1996 .

[43]  Dolores Lozano-Castelló,et al.  Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures , 2007 .

[44]  Juan Hu,et al.  High hydrogen storage capacity of porous carbons prepared by using activated carbon. , 2009, Journal of the American Chemical Society.

[45]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[46]  H. Orikasa,et al.  An easy method for the synthesis of ordered microporous carbons by the template technique , 2005 .

[47]  T. Kyotani,et al.  High-pressure hydrogen storage in zeolite-templated carbon , 2009 .

[48]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[49]  T. Kyotani Control of pore structure in carbon , 2000 .

[50]  P. Llewellyn,et al.  Is the bet equation applicable to microporous adsorbents , 2007 .

[51]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[52]  Ann V. Call,et al.  Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. , 2011, Chemistry.

[53]  G. Yushin,et al.  Carbide‐Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption , 2006 .

[54]  Feng Li,et al.  Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation , 2007 .

[55]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[56]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[57]  T. Horikawa,et al.  Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel , 2004 .

[58]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[59]  T. Kyotani,et al.  Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. , 2011, Journal of the American Chemical Society.

[60]  N. Xia,et al.  Worm-like mesoporous carbon synthesized from metal―organic coordination polymers for supercapacitors , 2009 .

[61]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[62]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.