Two distance memories in desert ants—Modes of interaction

Navigation plays an essential role for many animals leading a mobile mode of life, and for central place foragers in particular. One important prerequisite for navigation is the ability to estimate distances covered during locomotion. It has been shown that Cataglyphis desert ants, well-established model organisms in insect navigation, use two odometer mechanisms, namely, stride and optic flow integration. Although both mechanisms are well established, their mode of interaction to build one odometer output remains enigmatic. We tackle this problem by selectively covering the ventral eye parts in Cataglyphis fortis foragers, the eye regions responsible for optic flow input in odometry. Exclusion of optic flow cues was implemented during different sections of outbound and inbound travel. This demonstrated that the two odometers have separate distance memories that interact in determining homing distance. Possible interpretations posit that the two odometer memories (i) take on different relative weights according to context or (ii) compete in a winner-take-all mode. Explanatory values and implications of such interpretations are discussed. We are able to provide a rough quantitative assessment of odometer cue interaction. An understanding of the interaction of different odometer mechanisms appears valuable not only for animal navigation research but may inform discussions on sensor fusion in both behavioural contexts and potential technical applications.

[1]  R. Wehner,et al.  The Ant Odometer: Stepping on Stilts and Stumps , 2006, Science.

[2]  R. Wehner Himmelsnavigation bei Insekten : Neurophysiologie und Verhalten , 1982 .

[3]  Markus Knaden,et al.  Egocentric and geocentric navigation during extremely long foraging paths of desert ants , 2015, Journal of Comparative Physiology A.

[4]  R. Wehner,et al.  Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. , 2000, The Journal of experimental biology.

[5]  R. Wehner,et al.  Beginnings of a synthetic approach to desert ant navigation , 2014, Behavioural Processes.

[6]  S. Laughlin,et al.  Sensor Fusion in Identified Visual Interneurons , 2010, Current Biology.

[7]  R. Wehner,et al.  Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. , 2000, The Journal of experimental biology.

[8]  R. Wehner The architecture of the desert ant's navigational toolkit (Hymenoptera: Formicidae) , 2009 .

[9]  D. Agosti Review and Reclassification of Cataglyphis (Hymenoptera, Formicidae). , 2011 .

[10]  Rüdiger Wehner,et al.  Desert ants: is active locomotion a prerequisite for path integration? , 2006, Journal of Comparative Physiology A.

[11]  M V Srinivasan,et al.  Two odometers in honeybees? , 2008, Journal of Experimental Biology.

[12]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[13]  Holk Cruse,et al.  No Need for a Cognitive Map: Decentralized Memory for Insect Navigation , 2011, PLoS Comput. Biol..

[14]  E. Wasserman,et al.  Comparative cognition : experimental explorations of animal intelligence , 2009 .

[15]  Jörg Conradt,et al.  Cortically inspired sensor fusion network for mobile robot egomotion estimation , 2015, Robotics Auton. Syst..

[16]  R. Wehner,et al.  Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat‐adapted desert ants: Cataglyphis and Ocymyrmex species * , 2011 .

[17]  R. Wehner,et al.  Wind and sky as compass cues in desert ant navigation , 2007, Naturwissenschaften.

[18]  Bernhard Ronacher,et al.  Transfer of directional information between the polarization compass and the sun compass in desert ants , 2014, Journal of Comparative Physiology A.

[19]  Ademar Ezzughayyar,et al.  Neurosecretory cells in the central nervous system of the red slug Arion rufus L , 2009 .

[20]  Harald Wolf,et al.  Estimation of homing distance in desert ants, Cataglyphis fortis, remains unaffected by disturbance of walking behaviour , 2009, Journal of Experimental Biology.

[21]  Henrik Jörntell,et al.  Stimulation within the cuneate nucleus suppresses synaptic activation of climbing fibers , 2013, Front. Neural Circuits.

[22]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[23]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[24]  R. Wehner,et al.  Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis , 1997, Journal of Comparative Physiology A.

[25]  Thierry Hoinville,et al.  Steering intermediate courses: desert ants combine information from various navigational routines , 2016, Journal of Comparative Physiology A.

[26]  Martin Egelhaaf,et al.  Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action , 2012, Front. Neural Circuits.

[27]  Serge Aron,et al.  Cataglyphis desert ants: a good model for evolutionary biology in Darwin’s anniversary year—A review , 2010 .

[28]  K. Lorenz Über die Bildung des Instinktbegriffes , 2005, Naturwissenschaften.

[29]  R. Wehner,et al.  The desert ant odometer: a stride integrator that accounts for stride length and walking speed , 2007, Journal of Experimental Biology.

[30]  J. Rieser,et al.  Bayesian integration of spatial information. , 2007, Psychological bulletin.

[31]  Thierry Hoinville,et al.  Optimal multiguidance integration in insect navigation , 2018, Proceedings of the National Academy of Sciences.

[32]  H. Wolf Odometry and insect navigation , 2011, Journal of Experimental Biology.

[33]  B. Ronacher,et al.  Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled , 1995, Journal of Comparative Physiology A.

[34]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[35]  Ken Cheng,et al.  Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments , 2011, Journal of Experimental Biology.

[36]  Rüdiger Wehner,et al.  Nest-mark orientation versus vector navigation in desert ants , 2008, Journal of Experimental Biology.

[37]  R. Wehner,et al.  The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis , 2003, Journal of Comparative Physiology A.

[38]  Robert W. Taylor BLOODY FUNNY WASPS! SPECULATIONS ON THE EVOLUTION OF EUSOCIALITY IN ANTS , 2007 .

[39]  M. Egelhaaf,et al.  Vision in flying insects , 2002, Current Opinion in Neurobiology.

[40]  R. Wehner,et al.  Path Integration Provides a Scaffold for Landmark Learning in Desert Ants , 2010, Current Biology.

[41]  R. Wehner,et al.  The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis , 1994, Journal of Comparative Physiology A.

[42]  Matthias Wittlinger,et al.  Optic flow odometry operates independently of stride integration in carried ants , 2016, Science.

[43]  G. Beugnon,et al.  Vision-independent odometry in the ant Cataglyphis cursor , 2005, Naturwissenschaften.

[44]  R. Wehner,et al.  Path integration in desert ants, Cataglyphis: how to make a homing ant run away from home , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Ken Cheng Arthropod NavigationAnts, Bees, Crabs, Spiders Finding Their Way , 2012 .

[46]  R. Wehner,et al.  Taxonomie, Funktionsmorphologie und Zoogeographie der saharischen Wüstenameise Cataglyphis fortis (Forel 1902) stat. nov. (Insecta: Hymenoptera: Formicidae) , 1983 .

[47]  Bernhard Ronacher,et al.  Interactions of the polarization and the sun compass in path integration of desert ants , 2013, Journal of Comparative Physiology A.

[48]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[49]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  B. Webb,et al.  Optimal cue integration in ants , 2015, Proceedings of the Royal Society B: Biological Sciences.

[51]  M. Spetch,et al.  Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues , 2014, Journal of Experimental Biology.

[52]  Kathryn J. Jeffery,et al.  The neurobiology of spatial behaviour , 2003 .

[53]  P. Graham,et al.  Ants use the panoramic skyline as a visual cue during navigation , 2009, Current Biology.

[54]  Matthias Wittlinger,et al.  Homing distance in desert ants, Cataglyphis fortis, remains unaffected by disturbance of walking behaviour and visual input , 2013, Journal of Physiology-Paris.