The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits

Abstract Phosphorus (in the form of phosphate) is an essential nutrient and energy carrier on many different levels of life, and a key element in mediating between living and lifeless parts of the biosphere. One of the most important aspects of the phosphorus cycle is its vital role in governing productivity, thereby interacting with the exogenic part of the carbon cycle, which, in turn, is important in regulating Earth's climate. Phosphorus is a prime element to be traced in Earth's history, because it allows for the reconstruction of long-term feedback mechanisms between climate, environment and ecology, and of global change as such. Marine sedimentary phosphate deposits are particularly suited to study aspects of the phosphorus cycle, because, in the case of ubiquity, their origin may result from a general acceleration of the global phosphorus cycle. Sources of sedimentary phosphate are microbial breakdown of buried organic matter and redox-driven phosphate desorption from iron and manganese oxyhydroxides. Dissolved sea-water phosphate represents an additional source which may become important in the formation of phosphatic hardgrounds. The main locus of phosphogenesis is near the sediment-water interface, but phosphogenesis also occurs at greater sediment depths. Current-induced winnowing and transport processes along the sea floor concentrate phosphate precipitates into deposits, which exhibit internal stratification patterns typical for the prevailing hydraulic energy regime. In a sequence-stratigraphic context, phosphate deposits preferentially occur along marine or maximum flooding surfaces. Consequent sedimentary reworking may result in the transfer of phosphates to highstand or lowstand deposits. (Bio-)chemical weathering on continents represents the most significant source of bioavailable phosphorus. This implies that long-term changes in marine phosphorus levels — and with these changes in marine ecology, productivity rates and ratios of exported carbonate carbon and organic carbon — are a response to changes in continental weathering rates. A compilation of marine sedimentary phosphorus burial rates for the last 160 Myr suggests that natural variations have occurred that span one order of magnitude. For the late Jurassic, Cretaceous and most of the Paleogene, the phosphorus cycle appears to have been accelerated in times of climate warming, which was most likely due to the spreading of zones of humid climate and more intense continental weathering. In the Neogene, the phosphorus cycle appears to have responded to changes in glacially induced weathering. This suggests that uniform interpretations with respect to the emplacement of major phosphorite deposits should be treated with caution. Integrated analyses of the sedimentary and biogeochemical context of phosphorite occurrences may help to identify paleoenvironmental conditions, as well as to improve our understanding of periods of enhanced phosphate accumulation, periods which were usually characterized by steep gradients in the development of climate and environment. With regard to the complexity of feedback mechanisms between the phosphorus cycle and the biosphere, the present-day input rates of phosphate into the world's oceans should be of great concern. They are more than doubled by anthropogenic means and affect ecological systems on a rapidly increasing scale.

[1]  R. Berner,et al.  The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested1 , 1984 .

[2]  K. Ruttenberg Reassessment of the oceanic residence time of phosphorus , 1993 .

[3]  J. Vera,et al.  Mesozoic Stratigraphic Breaks and Pelagic Stromatolites in the Betic Cordillera, Southern Spain , 1994 .

[4]  W. Burnett Apatite-glauconite associations off Peru and Chile: palaeo-oceanographic implications , 1980, Journal of the Geological Society.

[5]  E. Baker,et al.  The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific , 1990 .

[6]  T. Worsley,et al.  Long-term phosphorus flux to deep-sea sediments , 1981 .

[7]  U. Rad,et al.  Exploration and Genesis of Submarine Phosphorite Deposits from the Chatham Rise, New Zealand — A Review , 1987 .

[8]  K. Ruttenberg Development of a sequential extraction method for different forms of phosphorus in marine sediments , 1992 .

[9]  W. Burnett,et al.  Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation , 1988 .

[10]  A. Ramirez,et al.  Organic phosphorus and carbon in marine sediments , 1987 .

[11]  M. Coleman,et al.  Geochemistry of diagenetic non-silicate minerals: kinetic considerations , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  Robert A. Berner,et al.  Modeling the geochemical carbon cycle , 1989 .

[13]  R. Hecky,et al.  Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1 , 1988 .

[14]  C. V. D. Borch Phosphatic concretions and nodules from the upper continental slope, northern New South Wales , 1970 .

[15]  M. Coleman,et al.  Stable isotopic characterisation of francolite formation , 1986 .

[16]  Z. Lewy Pebbly phosphate and granular phosphorite (Late Cretaceous, southern Israel) and their bearing on phosphatization processes , 1990, Geological Society, London, Special Publications.

[17]  M. Bender,et al.  Tracers in the Sea , 1984 .

[18]  E. Barron,et al.  Continental drift and the global pattern of sedimentation , 1981 .

[19]  G. Filippelli,et al.  Similar phosphorus fluxes in ancient phosphorite deposits and a modern phosphogenic environment , 1992 .

[20]  Ellery D. Ingall,et al.  Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments , 1990 .

[21]  K. Föllmi,et al.  Model simulation of mid-cretaceous ocean circulation. , 1991, Science.

[22]  E. Suess,et al.  Coastal Upwelling Its Sediment Record , 1983 .

[23]  W. Burnett,et al.  Contemporary Phosphorites on the Continental Margin of Peru , 1973, Science.

[24]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[25]  A. G. Fischer,et al.  Secular Variations in the Pelagic Realm , 1977 .

[26]  W. Burnett,et al.  Pore water fluoride in Peru continental margin sediments: Uptake from seawater , 1983 .

[27]  K. Föllmi,et al.  Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin , 1994 .

[28]  S. Riggs Paleoceanographic Model of Neogene Phosphorite Deposition, U.S. Atlantic Continental Margin , 1984, Science.

[29]  M. Lamboy Microstructures of a phosphatic crust from the peruvian continental-margin - phosphatised bacteria and associated phenomena , 1990 .

[30]  Jean-Pierre Gattuso,et al.  Marine calcification as a source of carbon dioxide : positive feedback of increasing atmospheric CO2 , 1994 .

[31]  E. Atlas,et al.  Solubility behavior of apatites in seawater1 , 1977 .

[32]  E. Flügel,et al.  Carbonate platforms as recorders of high‐amplitude eustatic sea‐level fluctuations: the late Albian appenninica‐event , 1993 .

[33]  T. E. Cloete,et al.  Enhanced Biological Phosphorus Removal in Activated Sludge Systems , 1990 .

[34]  K. Föllmi,et al.  Doomed pioneers: Gravity-flow deposition and bioturbation in marine oxygen-deficient environments , 1990 .

[35]  G. Filippelli,et al.  Phosphorus accumulation rates in a Miocene low oxygen basin: The Monterey Formation (Pismo Basin), California , 1994 .

[36]  Y. Kolodny,et al.  Isotope signatures in phosphate deposits: Formation and diagenetic history , 1992 .

[37]  P. Froelich Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism1 , 1988 .

[38]  M. Skidmore,et al.  Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment , 1995 .

[39]  K. Emery,et al.  Phosphorite deposits on the sea floor off southern California , 1942 .

[40]  G. Baturin,et al.  Radiometric evidence for recent formation of phosphatic nodules in marine shelf sediments , 1972 .

[41]  R. Larson Latest pulse of Earth: Evidence for a mid-Cretaceous superplume , 1991 .

[42]  A. Seilacher,et al.  Cycles and Events in Stratigraphy , 1991 .

[43]  C. Glenn Depositional sequences of the Duwi, Sibâîya and Phosphate Formations, Egypt: phosphogenesis and glauconitization in a Late Cretaceous epeiric sea , 1990, Geological Society, London, Special Publications.

[44]  K. Caldeira,et al.  The mid-Cretaceous super plume, carbon dioxide, and global warming. , 1991, Geophysical research letters.

[45]  M. Lamboy Microbial mediation in phosphatogenesis: new data from the Cretaceous phosphatic chalks of northern France , 1990, Geological Society, London, Special Publications.

[46]  P. McCall,et al.  Animal-Sediment Relations , 1982 .

[47]  H. Posamentier,et al.  An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions , 1988 .

[48]  R. Berner,et al.  A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation , 1988 .

[49]  B. D'anglejan Origin of marine phosphorites off Baja California, Mexico , 1967 .

[50]  K. Föllmi,et al.  Nonlinearities in Phosphogenesis and Phosphorus-Carbon Coupling and Their Implications for Global Change , 1993 .

[51]  C. A. Ross,et al.  Sea-level changes: An integrated approach , 1986 .

[52]  Guerry H. McClellan,et al.  Mineralogy of carbonate fluorapatites , 1980, Journal of the Geological Society.

[53]  G. Birch A Model of Penecontemporaneous Phosphatization by Diagenetic and Authigenic Mechanisms from the Western Margin of Southern Africa , 1980 .

[54]  M. Bender,et al.  Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise , 1977 .

[55]  Christophe Rabouille,et al.  Biogeochemical Transformations in Sediments: Kinetic Models of Early Diagenesis , 1993 .

[56]  M. Brongersma-Sanders Chapter 29: Mass Mortality in the Sea , 1957 .

[57]  L. Kump Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus , 1988, Nature.

[58]  W. Stumm The acceleration of the hydrogeochemical cycling of phosphorus , 1973 .

[59]  W. Broecker,et al.  Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera , 1995, Nature.

[60]  R. Aller,et al.  The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water , 1982 .

[61]  H. Schrader,et al.  Variation of upwelling/oceanic conditions during the latest Pleistocene through Holocene off the central Peruvian coast: A diatom record , 1981 .

[62]  J. Love Uraniferous phosphatic lake beds of Eocene age in intermontane basins of Wyoming and Utah , 1964 .

[63]  R. Berner,et al.  Fluorapatite crystal growth from modified seawater solutions , 1991 .

[64]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[65]  R. Aller Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation☆ , 1994 .

[66]  J. Lucas,et al.  Expériences sur la précipitation directe de l'apatite dans l'eau de mer: Implication dans la genèse des phosphorites , 1976 .

[67]  H. Veeh,et al.  Are Phosphorites Reliable Indicators of Upwelling , 1983 .

[68]  K. Föllmi Evolution of the Mid-Cretaceous Triad: Platform Carbonates, Phosphatic Sediments, and Pelagic Carbonates Along the Northern Tethys Margin , 1989 .

[69]  W. Burnett,et al.  Carbon isotopic composition and lattice-bound carbonate of Peru-Chile margin phosphorites , 1988 .

[70]  I. Jarvis,et al.  Trace-element mobility during early diagenesis in distal turbidites: late Quaternary of the Madeira Abyssal Plain, N Atlantic , 1987, Geological Society, London, Special Publications.

[71]  E. Erba,et al.  The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous , 1992 .

[72]  G. Baturin THE ORIGIN OF MARINE PHOSPHORITES , 1989 .

[73]  C. Reimers,et al.  Spatial and temporal patterns of organic matter accumulation on the Peru continental margin , 1983 .

[74]  M. Raymo The Himalayas, organic carbon burial, and climate in the Miocene , 1994 .

[75]  D. Mcconnell Precipitation of phosphates in sea water , 1965 .

[76]  S. Riggs,et al.  Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite—glauconite association on the East Australian continental margin , 1990, Geological Society, London, Special Publications.

[77]  Werner Stumm,et al.  Global chemical cycles and their alterations by man , 1977 .

[78]  L. L. Ames The genesis of carbonate apatites , 1959 .

[79]  D. Z. Piper Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks , 1994 .

[80]  E. Sholkovitz Interstitial water chemistry of the Santa Barbara Basin sediments , 1973 .

[81]  Jacques Lucas,et al.  Synthèse de l'apatite par voie bactérienne à partir de matière organique phosphatée et de divers carbonates de calcium dans des eaux douce et marine naturelles , 1984 .

[82]  I. Jarvis Sedimentology, geochemistry and origin of phosphatic chalks: the Upper Cretaceous deposits of NW Europe , 1992 .

[83]  Ulf Larsson,et al.  Nutrient limitation of primary production in the Baltic Sea area , 1990 .

[84]  Clifford H. Mortimer,et al.  THE EXCHANGE OF DISSOLVED SUBSTANCES BETWEEN MUD AND WATER IN LAKES, II , 1941 .

[85]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[86]  J. Adams,et al.  Some properties of a chrono-toposequence of soils from granite in new Zealand, 2. forms and amounts of phosphorus , 1975 .

[87]  D. Hodell,et al.  Phosphogenesis and weathering of shelf sediments from the southeastern United States: Implications for Miocene δ13C excursions and global cooling , 1990 .

[88]  N. Smeck Phosphorus dynamics in soils and landscapes , 1985 .

[89]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[90]  Y. Tardy,et al.  Geochemistry and evolution of lateritic landscapes , 1992 .

[91]  M. Slansky Geology of sedimentary phosphates , 1986 .

[92]  F. Manheim,et al.  Marine phosphorite formation off Peru , 1975 .

[93]  T. Worsley,et al.  Pacific pelagic phosphorus accumulation during the last 10 M.Y. , 1988 .

[94]  G. Shaffer A Model of Biogeochemical Cycling of Phosphorus, Nitrogen, Oxygen, and Sulphur in the Ocean' One Step Toward a Global Climate Model , 1989 .

[95]  J. Morse Calculation of diffusive fluxes across the sediment‐water wnterface , 1974 .

[96]  E. Duursma Productivity of the ocean: Present and past: Edited by W.H. Berger, V.S. Smetacek and G. Wefer. John Wiley & Sons, Chichester, UK 1989. A Dahlem Workshop Report, Life Sciences Research Rep. 44. xiii + 471 pp. ISBN 0-471-92246-3 , 1992 .

[97]  R. Bustin,et al.  Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales , 1993 .

[98]  D. Lovley,et al.  Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese , 1988, Applied and environmental microbiology.

[99]  G. Birch Phosphatic rocks on the western margin of South Africa , 1979 .

[100]  D. Lazarus,et al.  How synchronous are neogene marine plankton events , 1994 .

[101]  S. Calvert Oceanographic controls on the accumulation of organic matter in marine sediments , 1987, Geological Society, London, Special Publications.

[102]  J. R. Harris,et al.  Bacterial origin of East Australian continental margin phosphorites , 1981, Nature.

[103]  W. Burnett,et al.  U-Series, Oceanographic and Sedimentary Evidence in Support of Recent Formation of Phosphate Nodules off Peru , 1980 .

[104]  J. Stewart,et al.  DISTRIBUTION AND MOBILITY OF PHOSPHORUS IN GRASSLAND AND FOREST SOILS OF SASKATCHEWAN , 1989 .

[105]  R. Carignan,et al.  Postdepositional mobility of phosphorus in lake sediments1 , 1981 .

[106]  W. Burnett,et al.  Further studies of the nature, composition and ages of contemporary phosphorite from the Namibian Shelf , 1984 .

[107]  R. Tyson The genesis and palynofacies characteristics of marine petroleum source rocks , 1987, Geological Society, London, Special Publications.

[108]  Per Jonsson,et al.  MARINE EUTROPHICATION CASE-STUDIES IN SWEDEN , 1990 .

[109]  R. Jahnke The synthesis and solubility of carbonate fluorapatite , 1984 .

[110]  B. Boudreau Mass-transport constraints on the growth of discoidal ferromanganese nodules , 1988 .

[111]  M. Krom,et al.  The diagenesis of phosphorus in a nearshore marine sediment , 1981 .

[112]  S. Riggs Phosphorite sedimentation in Florida; a model phosphogenic system , 1979 .

[113]  I. Jarvis,et al.  Geochemical characteristics and provenance of late Quaternary sediments from the Madeira Abyssal Plain, N Atlantic , 1987, Geological Society, London, Special Publications.

[114]  D. Mallinson,et al.  Origin and age of phosphorite from the south-central Florida Platform: Relation of phosphogenesis to sea-level fluctuations and δ13C excursions , 1993 .

[115]  N. Smeck,et al.  PHOSPHORUS: AN INDICATOR OF PEDOGENETIC WEATHERING PROCESSES , 1973 .

[116]  K. Krajewski Albian Pelagic Phosphate-Rich Macrooncoids from the Tatra Mts (Poland) , 1983 .

[117]  W. Burnett Geochemistry and origin of phosphorite deposits from off Peru and Chile , 1977 .

[118]  P. Cook,et al.  A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics , 1979 .

[119]  D. Z. Piper,et al.  Upwelling and Phosphorite Formation in the Ocean , 1983 .

[120]  D. Soudry,et al.  Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, Southern Israel) , 1988 .

[121]  R. Stein Accumulation of Organic Carbon in Marine Sediments , 1991 .

[122]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[123]  C. Glenn,et al.  Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals: authigenesis in modern organic -rich sediments , 1988 .

[124]  D. Soudry,et al.  Omission-surface incipient phosphate crusts on early diagenetic calcareous concretions and their possible origin, Upper Campanian, southern Israel , 1990 .

[125]  G. Filippelli,et al.  The oceanic phosphorus cycle and continental weathering during the Neogene , 1994 .

[126]  R. Berner Sulfate reduction and the rate of deposition of marine sediments , 1978 .

[127]  D. L. Anderson Superplumes or supercontinents , 1994 .

[128]  L. E. Fox Geochemistry of dissolved phosphate in the Sepik River and Estuary, Papua, New Guinea , 1990 .

[129]  V. Ittekkot,et al.  The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO2 contents , 1993 .

[130]  M. Rampino,et al.  Flood Basalt Volcanism During the Past 250 Million Years , 1988, Science.

[131]  James W. Fourqurean,et al.  Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum , 1992 .

[132]  K. Krajewski Early diagenetic phosphate cements in the Albian condensed glauconitic limestone of the Tatra Mountains, Western Carpathians , 1984 .

[133]  Arthur,et al.  Geochemical expression of early diagenesis in middle Eocene-lower Oligocene pelagic sediments in the Southern Labrador Sea, Site 647, ODP Leg 105 , 1989 .

[134]  G. Likens,et al.  Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems , 1989, Nature.

[135]  M. Meybeck Carbon, nitrogen, and phosphorus transport by world rivers , 1982 .

[136]  M. Searle The rise and fall of Tibet , 1995, Nature.

[137]  M. Meybeck C, N, P and S in Rivers: From Sources to Global Inputs , 1993 .

[138]  P. Southgate Cambrian Phoscrete Profiles, Coated Grains, and Microbial Processes in Phosphogenesis: Georgina Basin, Australia , 1986 .

[139]  K. Ruttenberg Proxy paradox for P-prediction , 1994, Nature.

[140]  P. Enos,et al.  Deep-Water Carbonate Environments , 1977 .

[141]  H. D. Holland The chemistry of the atmosphere and oceans , 1978 .

[142]  L. Libelo,et al.  Cycling of water through the sediment-water interface by passive ventilation of relict biological structures , 1994 .

[143]  M. Lamboy Phosphatization of calcium carbonate in phosphorites: microstructure and importance , 1993 .

[144]  K. Goodman,et al.  Deep bacterial biosphere in Pacific Ocean sediments , 1994, Nature.

[145]  G. Benoit,et al.  Chemical processes at the sediment-water interface. , 1990 .

[146]  R. Embley,et al.  Cenozoic Regional Erosion of the Abyssal Sea Floor Off South Africa , 1984 .

[147]  G. Shaffer Phosphate pumps and shuttles in the Black Sea , 1986, Nature.

[148]  P. Ouwehand Die Garschella-Formation ("Helvetischer Gault", Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz) , 1987 .

[149]  R. Garrels,et al.  Modeling of Geochemical Cycles: Phosphorus as an Example , 1975 .

[150]  C. Hillaire‐Marcel,et al.  Early diagenetic processes in deep Labrador Sea sediments: reactive and nonreactive iron and phosphorus , 1994 .

[151]  J. H. Martin,et al.  IRON, LIEBIG'S LAW, AND THE GREENHOUSE , 1991 .

[152]  M. Goldhaber,et al.  CONTROLS AND CONSEQUENCES OF SULFATE REDUCTION RATES IN RECENT MARINE SEDIMENTS , 1975 .

[153]  P. Hallock,et al.  Fluctuations in the trophic resource continuum: a factor in global diversity cycles? , 1987 .

[154]  M. Arthur,et al.  Cretaceous ' oceanic anoxic events' as causal factors in development of reef- reservoired giant oil fields. , 1979 .

[155]  P. Sheldonr,et al.  Ancient Marine Phosphorites , 1981 .

[156]  G. C. Amstutz Developments in Sedimentology , 1965 .

[157]  R. Bilger,et al.  Effects of water velocity on phosphate uptake in coral reef-hat communities , 1992 .

[158]  H. D. Holland,et al.  Phosphorus in foraminiferal sediments from North Atlantic Ridge cores and in pure limestones. , 1987, Geochimica et cosmochimica acta.

[159]  G. Baturin Stages of Phosphorite Formation on the Ocean Floor , 1971 .

[160]  H. T. Mullins,et al.  Sea-floor phosphorites along the Central California continental margin , 1985 .

[161]  Robert A. Gulbrandsen Physical and chemical factors in the formation of marine apatite , 1969 .

[162]  J. Brooks,et al.  Marine Petroleum Source Rocks , 1987 .

[163]  M. Krom,et al.  Adsorption of phosphate in anoxic marine sediments1 , 1980 .

[164]  Ellery D. Ingall,et al.  Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus , 1994 .

[165]  T. Beveridge,et al.  Iron phosphate precipitation by epilithic microbial biofilms in Arctic Canada , 1994 .

[166]  B. Boudreau,et al.  The influence of a diffusive sublayer on accretion, dissolution, and diagenesis at the sea floor , 1982 .

[167]  M. Renard Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C) , 1986 .

[168]  G. Filippelli,et al.  An apparent contradiction in the role of phosphorus in Cenozoic chemical mass balances for the World Ocean , 1994 .

[169]  P. Cook Spatial and Temporal Controls on the Formation of Phosphate Deposits - A Review , 1984 .

[170]  H. Veeh,et al.  Accumulation of uranium in sediments and phosphorites on the South West African shelf , 1974 .

[171]  B. Jørgensen,et al.  Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor , 1990, Nature.

[172]  C. Glenn,et al.  Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt , 1990 .

[173]  D. Soudry Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel) , 1987 .

[174]  F. Manheim,et al.  Composition and Origin of Phosphorite Deposits of the Blake Plateau , 1980 .

[175]  M. Meybeck How to Establish and Use World Budgets of Riverine Materials , 1988 .

[176]  Y. Zanin,et al.  Phosphatized bacteria from Cretaceous phosphorites of East-European Platform and Paleocene phosphorites of Morocco , 1985 .

[177]  A. O. Fuller Phosphate occurrences on the western and southern coastal areas and continental shelves of southern Africa , 1979 .

[178]  L. Sommers,et al.  Determination of Total Phosphorus in Soils: A Rapid Perchloric Acid Digestion Procedure1 , 1972 .

[179]  W. Burnett,et al.  Distribution, texture and composition of modern phosphate pellets in Peru shelf muds , 1988 .

[180]  D. Schindler Evolution of phosphorus limitation in lakes. , 1977, Science.

[181]  M. Delamette Aptian, Albian and Cenomanian microbialites from the condensed phosphatic deposits of the Helvetic shelf, Western Alps , 1990 .

[182]  R. Berner Phosphate removal from sea water by adsorption on volcanogenic ferric oxides , 1973 .

[183]  P. Malone,et al.  Microbial carbonate and phosphate precipitates from sea water cultures , 1970 .

[184]  J. Bréhéret,et al.  A carbonate-isotope record from Aptian-Albian sediments of the Vocontian Trough (SE France) , 1991 .

[185]  S. V. Smith,et al.  Phosphorus limitation of net production in a confined aquatic ecosystem , 1984, Nature.

[186]  P. Hallock,et al.  Nutrient excess and the demise of coral reefs and carbonate platforms , 1986 .

[187]  K. Turekian The Oceans, Streams, and Atmosphere , 1969 .

[188]  E. Degens Perspectives on Biogeochemistry , 1989 .

[189]  P. Weaver,et al.  Geology and geochemistry of abyssal plains , 1987 .

[190]  Roger L. Larson,et al.  Mantle plumes control magnetic reversal frequency , 1991 .

[191]  A. Abed,et al.  Role of microbial processes in the genesis of Jordanian Upper Cretaceous phosphorites , 1990, Geological Society, London, Special Publications.

[192]  B. Flemming Factors Controlling Shelf Sediment Dispersal Along the Southeast African Continental Margin , 1981 .

[193]  M. Coleman,et al.  Carbon and oxygen isotopic composition of structural carbonate in sedimentary francolite , 1980, Journal of the Geological Society.

[194]  W. G. Siesser Age of phosphorites on the South African continental margin , 1978 .

[195]  A. Martin,et al.  Sedimentary basin in-fill in the northernmost Natal Valley, hiatus development and Agulhas Current palaeo-oceanography , 1982, Journal of the Geological Society.

[196]  G. Mcclellan,et al.  Mineralogy of sedimentary apatites , 1990, Geological Society, London, Special Publications.

[197]  M. Lucotte,et al.  A comparison of several methods for the determination of iron hydroxides and associated orthophosphates in estuarine particulate matter , 1985 .

[198]  A. Heim Über submarine Denudation und chemische Sedimente , 1924 .

[199]  R. Feely,et al.  Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans , 1996 .

[200]  G. O'Brien,et al.  East Australian Continental Margin phosphorites , 1988 .

[201]  W. Burnett,et al.  Pleistocene phosphorites off the west coast of South Africa , 1983, Nature.

[202]  E. Suess Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris , 1981 .

[203]  A. Gale,et al.  Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance , 1994, Geological Magazine.

[204]  Lei Zhou,et al.  Sedimentation history of the South Pacific pelagic clay province over the last 85 million years Inferred from the geochemistry of Deep Sea Drilling Project Hole 596 , 1992 .

[205]  Y. K. Bentor Marine Phosphorites—Geochemistry, Occurrence, Genesis , 1980 .

[206]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[207]  Jos T. A. Verhoeven,et al.  Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water level , 1993 .

[208]  K. Grimm,et al.  Doomed pioneers; allochthonous crustacean tracemakers in anaerobic basinal strata, Oligo-Miocene San Gregorio Formation, Baja California Sur, Mexico , 1994 .

[209]  Wallace S. Broecker,et al.  The carbon cycle and atmospheric CO2 , 1986 .

[210]  R. Berner,et al.  AUTHIGENIC APATITE FORMATION AND BURIAL IN SEDIMENTS FROM NON-UPWELLING, CONTINENTAL MARGIN ENVIRONMENTS , 1993 .

[211]  L. Prévôt,et al.  The synthesis of apatite by bacterial activity : mechanism , 1985 .

[212]  N. Caraco Disturbance of the phosphorus cycle: A case of indirect effects of human activity. , 1993, Trends in ecology & evolution.

[213]  H. Weissert C-Isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early cretaceous , 1989 .

[214]  J. Zachos,et al.  Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean , 1992 .

[215]  K. Föllmi,et al.  Cyclic phosphate-rich successions in the upper Cretaceous of Colombia , 1992 .

[216]  P. Ouwehand,et al.  Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs , 1987 .

[217]  Joseph S. Meyer,et al.  Contribution of bacteria to release and fixation of phosphorus in lake sediments , 1988 .

[218]  D. Canfield,et al.  Factors influencing organic carbon preservation in marine sediments. , 1994, Chemical geology.

[219]  H. Jenkyns,et al.  Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions , 1981 .

[220]  I. Jarvis,et al.  Phosphorite research and development , 1990 .

[221]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[222]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[223]  P. Falkowski,et al.  PHYSIOLOGICAL LIMITATIONS ON PHYTOPLANKTON PRODUCTIVITY IN THE OCEAN , 1992 .

[224]  J. Syers,et al.  The fate of phosphorus during pedogenesis , 1976 .

[225]  K. Föllmi 160 m.y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions , 1995 .

[226]  W. Burnett,et al.  Growth Rates of Phosphate Nodules from the Continental Margin Off Peru , 1982, Science.

[227]  R. Sheldon Episodicity of Phosphate Deposition and Deep Ocean Circulation-a Hypothesis , 1980 .

[228]  S. Calvert,et al.  Upwelling and nutrient regeneration in the Benguela Current, October, 1968 , 1971 .

[229]  J. Trappe Microfacies zonation and spatial evolution of a carbonate ramp: Marginal Moroccan phosphate sea during the Paleogene , 1992 .

[230]  R. Garrison,et al.  Morphology and genesis of nodular phosphates in the Cenomanian Glauconitic Marl of south‐east England , 1975 .

[231]  V. Smith Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems , 1992 .

[232]  K. Fanning,et al.  The Dynamic Environment of the Ocean Floor , 1982 .

[233]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[234]  Robert A. Gulbrandsen,et al.  Time and the crystallization of apatite in seawater , 1984 .

[235]  R. Aller Carbonate Dissolution in Nearshore Terrigenous Muds: The Role of Physical and Biological Reworking , 1982, The Journal of Geology.

[236]  A. Seilacher,et al.  Sedimentological, ecological and temporal patterns of fossil Lagerstätten , 1985 .

[237]  P. Müller,et al.  Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation , 1979 .

[238]  G. Filippelli,et al.  36. PHOSPHORUS GEOCHEMISTRY AND ACCUMULATION RATES IN THE EASTERN EQUATORIAL PACIFIC OCEAN: RESULTS FROM LEG 1381 , 1995 .

[239]  I. Jarvis The Initiation of Phosphatic Chalk Sedimentation the Senonian Cretaceous of the Anglo Paris Basin , 1980 .

[240]  B. Hicks,et al.  The atmospheric input of trace species to the world ocean , 1991 .

[241]  R. Duce,et al.  Atmospheric Pathways of the Phosphorus Cycle , 1979 .

[242]  J. Reichholf Is Saharan Dust a Major Source of Nutrients for the Amazonian Rain Forest , 1986 .

[243]  D. Soudry,et al.  Microbial processes in the Negev phosphorites (southern Israel) , 1983 .

[244]  K. H. Wedepohl Handbook of Geochemistry , 1969 .

[245]  W. Stumm Chemical processes in lakes , 1985 .

[246]  W. Burnett,et al.  The present day formation of apatite in Mexican continental margin sediments , 1983 .

[247]  H. Jenkyns,et al.  Phosphorites and Paleoceanography , 1981 .

[248]  M. Suter,et al.  Growth rate variations of manganese nodules and crusts induced by paleoceanographic events , 1989 .

[249]  R. Berner,et al.  Phosphorus dynamics in the Amazon river and estuary , 1993 .

[250]  R. Bilger,et al.  Anomalous mass transfer of phosphate on coral reef flats , 1992 .

[251]  W. Ernst,et al.  Cenozoic basin development of coastal California , 1987 .

[252]  J. Vanderborght,et al.  Kinetic models of diagenesis in disturbed sediments: Part 1. mass transfer properties and silica diagenesis , 1977 .

[253]  C. Brett,et al.  Taphofacies models for epeiric sea environments: Middle Paleozoic examples , 1988 .

[254]  K. Hodges,et al.  Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension , 1995, Nature.

[255]  G. Baturin Phosphorites on the sea floor , 1982 .

[256]  T. Crews Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem , 1993 .

[257]  I. Jarvis,et al.  Eocene to Pleistocene phosphogenesis off western South Africa , 1988 .

[258]  C. Monty,et al.  Phanerozoic stromatolites II , 1994 .

[259]  J. Syers,et al.  Phosphate Chemistry in Lake Sediments , 1973 .

[260]  A. Coe,et al.  Strontium isotopic variations in Jurassic and Cretaceous seawater , 1994 .

[261]  A. Schimmelmann,et al.  Biogeochemistry and Origin of a Phosphoritized Coprolite from Anoxic Sediment of the Santa Barbara Basin , 1994 .

[262]  S. Calvert,et al.  The geochemistry of phosphorites from the Namibian shelf , 1978 .

[263]  G. Likens,et al.  Enrichment experiments for determining nutrient limitation: Four methods compared1 , 1975 .

[264]  H. Veeh,et al.  Holocene phosphorite on the East Australian continental margin , 1980, Nature.

[265]  D. Canfield,et al.  A new model for atmospheric oxygen over Phanerozoic time. , 1989, American journal of science.

[266]  W. G. Siesser,et al.  Petrology and origin of some phosphorites from the South African continental margin , 1972 .

[267]  K. Nealson,et al.  Chemical and microbiological studies of sulfide‐mediated manganese reduction 1 , 1986 .

[268]  Y. K. Bentor Phosphorites—the Unsolved Problems , 1980 .

[269]  R. Berner,et al.  The Nature of Phosphorus Burial in Modern Marine Sediments , 1993 .

[270]  A Bakun,et al.  Global Climate Change and Intensification of Coastal Ocean Upwelling , 1990, Science.

[271]  V. E. McKelvey Geology of Permian rocks in the western phosphate field; The Phosphoria, Park City, and Shedhorn formations in the western phosphate field , 1959 .

[272]  W. Burnett,et al.  Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview , 1990, Geological Society, London, Special Publications.

[273]  M. Bender,et al.  The marine phosphorus cycle , 1982 .

[274]  I. Jarvis,et al.  Phosphorite geochemistry: State of the art and environmental concerns , 1994 .

[275]  G. Ulmishek,et al.  Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors , 1992 .

[276]  J. Channell,et al.  Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: An indicator of decelerated global carbon cycling? , 1989 .

[277]  M. Krom,et al.  Phosphorus limitation of primary productivity in the eastern Mediterranean Sea , 1991 .

[278]  W. Buckland XII.—On the Discovery of Coprolites, or Fossil Fæces, in the Lias at Lyme Regis, and in other Formations. , 1829, Transactions of the Geological Society.

[279]  J. Hedges,et al.  Processes controlling the organic carbon content of open ocean sediments , 1988 .

[280]  R. Jahnke,et al.  Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters , 1994 .

[281]  H. Weissert,et al.  Late Jurassic climate and its impact on carbon cycling , 1996 .

[282]  W. Schlager Drowning Unconformities on Carbonate Platforms , 1989 .

[283]  G. Retallack Soils of the Past: An Introduction to Paleopedology , 2019 .

[284]  Y. Nathan The Mineralogy and Geochemistry of Phosphorites , 1984 .

[285]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[286]  G. Baturin Disseminated phosphorus in oceanic sediments — A review , 1988 .

[287]  Gerald R. Smith,et al.  Synsedimentary Lacustrine Phosphorites from the Pliocene Glenns Ferry Formation of Southwestern Idaho , 1981 .

[288]  H. Veeh,et al.  Geochemistry and radiometric ages of phosphatic nodules from the continental margin of northern New South Wales, Australia , 1980 .

[289]  K. Föllmi Phosphorus and phosphate-rich sediments, an environmental approach , 1993 .

[290]  J. Hubert,et al.  Bacterial involvement in apatite genesis , 1990 .

[291]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[292]  A. Milnes,et al.  Uranium-series isotopic studies of marine phosphorites and associated sediments from the East Australian continental margin , 1986 .

[293]  K. Föllmi Condensation and phosphogenesis: example of the Helvetic mid-Cretaceous (northern Tethyan margin) , 1990, Geological Society, London, Special Publications.

[294]  W. Burnett,et al.  Phosphorite research: a historical overview , 1990, Geological Society, London, Special Publications.

[295]  G. Likens,et al.  Short‐range atmospheric transport: A significant source of phosphorus to an oligotrophic lake , 1990 .

[296]  S. V. Smith Phosphorus versus nitrogen limitation in the marine environment1 , 1984 .