Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse–Barannikov Complex

[1]  N. Berglund Kramers' law: Validity, derivations and generalisations , 2011, 1106.5799.

[2]  D. L. Peutrec Local WKB construction for Witten Laplacians on manifolds with boundary , 2010 .

[3]  Michael Hitrik,et al.  Tunnel effect and symmetries for Kramers–Fokker–Planck type operators , 2010, Journal of the Institute of Mathematics of Jussieu.

[4]  Francois Laudenbach,et al.  A Morse complex on manifolds with boundary , 2010, 1003.5077.

[5]  D. L. Peutrec Small singular values of an extracted matrix of a Witten complex , 2009 .

[6]  J. Bismut,et al.  The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) , 2008 .

[7]  M. Shubin,et al.  Semiclassical asymptotics on manifolds with boundary , 2008, 0803.2502.

[8]  F. Hérau,et al.  Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.

[9]  Bernard Helffer,et al.  Quantitative Analysis of Metastability in Reversible Diffusion Processes Via a Witten Complex Approach: The Case With Boundary , 2006 .

[10]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[11]  A. Bovier,et al.  Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .

[12]  J. Kurchan,et al.  Kramers Equation and Supersymmetry , 2005, cond-mat/0503545.

[13]  A. Bovier,et al.  Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .

[14]  Christiaan C. Stolk,et al.  Semiclassical Analysis for the Kramers–Fokker–Planck Equation , 2004, math/0406275.

[15]  F. Nier Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. , 2004 .

[16]  P. Guerini Prescription du spectre du laplacien de Hodge-de Rham , 2004 .

[17]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[18]  Weiping Zhang,et al.  Lectures on Chern-Weil Theory and Witten Deformations , 2001 .

[19]  Yuri Safarov,et al.  SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .

[20]  Kung-Ching Chang,et al.  A cohomology complex for manifolds with boundary , 1995 .

[21]  S. A. Barannikov,et al.  The framed Morse complex and its invariants , 1994 .

[22]  E. Spanier Algebraic Topology , 1990 .

[23]  D. Stroock,et al.  Asymptotics of the spectral gap with applications to the theory of simulated annealing , 1989 .

[24]  Bernard Helffer,et al.  Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .

[25]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[26]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[27]  R. Bott Lectures on Morse theory, old and new , 1982 .

[28]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[29]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[30]  J. Bismut Hypoelliptic Laplacian and Bott–Chern Cohomology , 2013 .

[31]  Dorian Le Peutrec,et al.  Small eigenvalues of the Witten Laplacian acting on p-forms on a surface , 2011, Asymptot. Anal..

[32]  J. Bismut Laplacien hypoelliptique et cohomologie de Bott–Chern , 2011 .

[33]  D. L. Peutrec Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian , 2010 .

[34]  J. Bismut,et al.  The hypoelliptic Laplacian and Ray-Singer metrics , 2008 .

[35]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[36]  Roel Hospel,et al.  Morse Theory , 1999 .

[37]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[38]  W. Massey A basic course in algebraic topology , 1991 .

[39]  R. Bott Morse theory indomitable , 1988 .

[40]  J. Bismut The Witten complex and the degenerate Morse inequalities , 1986 .

[41]  B. Helffer,et al.  Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation , 1985 .

[42]  B. Helffer,et al.  Multiple Wells in the Semi‐Classical Limit III ‐ Interaction Through Non‐Resonant Wells , 1985 .

[43]  Bernard Helffer,et al.  Puits multiples en mecanique semi-classique iv etude du complexe de witten , 1985 .

[44]  M. I. Freĭdlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[45]  Bernard Helffer,et al.  Multiple wells in the semi-classical limit I , 1984 .

[46]  E. Witten Supersymmetry and Morse theory , 1982 .

[47]  B. Simon Trace ideals and their applications , 1979 .