Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse–Barannikov Complex
暂无分享,去创建一个
[1] N. Berglund. Kramers' law: Validity, derivations and generalisations , 2011, 1106.5799.
[2] D. L. Peutrec. Local WKB construction for Witten Laplacians on manifolds with boundary , 2010 .
[3] Michael Hitrik,et al. Tunnel effect and symmetries for Kramers–Fokker–Planck type operators , 2010, Journal of the Institute of Mathematics of Jussieu.
[4] Francois Laudenbach,et al. A Morse complex on manifolds with boundary , 2010, 1003.5077.
[5] D. L. Peutrec. Small singular values of an extracted matrix of a Witten complex , 2009 .
[6] J. Bismut,et al. The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) , 2008 .
[7] M. Shubin,et al. Semiclassical asymptotics on manifolds with boundary , 2008, 0803.2502.
[8] F. Hérau,et al. Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.
[9] Bernard Helffer,et al. Quantitative Analysis of Metastability in Reversible Diffusion Processes Via a Witten Complex Approach: The Case With Boundary , 2006 .
[10] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[11] A. Bovier,et al. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .
[12] J. Kurchan,et al. Kramers Equation and Supersymmetry , 2005, cond-mat/0503545.
[13] A. Bovier,et al. Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .
[14] Christiaan C. Stolk,et al. Semiclassical Analysis for the Kramers–Fokker–Planck Equation , 2004, math/0406275.
[15] F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. , 2004 .
[16] P. Guerini. Prescription du spectre du laplacien de Hodge-de Rham , 2004 .
[17] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[18] Weiping Zhang,et al. Lectures on Chern-Weil Theory and Witten Deformations , 2001 .
[19] Yuri Safarov,et al. SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .
[20] Kung-Ching Chang,et al. A cohomology complex for manifolds with boundary , 1995 .
[21] S. A. Barannikov,et al. The framed Morse complex and its invariants , 1994 .
[22] E. Spanier. Algebraic Topology , 1990 .
[23] D. Stroock,et al. Asymptotics of the spectral gap with applications to the theory of simulated annealing , 1989 .
[24] Bernard Helffer,et al. Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .
[25] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[26] John R. Harper,et al. Algebraic topology : a first course , 1982 .
[27] R. Bott. Lectures on Morse theory, old and new , 1982 .
[28] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[29] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[30] J. Bismut. Hypoelliptic Laplacian and Bott–Chern Cohomology , 2013 .
[31] Dorian Le Peutrec,et al. Small eigenvalues of the Witten Laplacian acting on p-forms on a surface , 2011, Asymptot. Anal..
[32] J. Bismut. Laplacien hypoelliptique et cohomologie de Bott–Chern , 2011 .
[33] D. L. Peutrec. Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian , 2010 .
[34] J. Bismut,et al. The hypoelliptic Laplacian and Ray-Singer metrics , 2008 .
[35] M. Dimassi,et al. Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .
[36] Roel Hospel,et al. Morse Theory , 1999 .
[37] G. Schwarz. Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .
[38] W. Massey. A basic course in algebraic topology , 1991 .
[39] R. Bott. Morse theory indomitable , 1988 .
[40] J. Bismut. The Witten complex and the degenerate Morse inequalities , 1986 .
[41] B. Helffer,et al. Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation , 1985 .
[42] B. Helffer,et al. Multiple Wells in the Semi‐Classical Limit III ‐ Interaction Through Non‐Resonant Wells , 1985 .
[43] Bernard Helffer,et al. Puits multiples en mecanique semi-classique iv etude du complexe de witten , 1985 .
[44] M. I. Freĭdlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[45] Bernard Helffer,et al. Multiple wells in the semi-classical limit I , 1984 .
[46] E. Witten. Supersymmetry and Morse theory , 1982 .
[47] B. Simon. Trace ideals and their applications , 1979 .