Predominance of Orthal Masticatory Movements in the Early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and Other Megatherioid Sloths

ABSTRACT The megatherioid sloths from the Santa Cruz Formation (Santacrucian Age; early-middle Miocene, Patagonia, southernmost South America) occupy basal positions in the most recent phylogenetic schemes. The cranial morphology of Eucholaeops, particularly of the teeth, suggests interesting functional features that shed light on the type of food it was capable of processing, and thus on the diet. A detailed morphofunctional analysis of the jaw apparatus was performed, and the results briefly compared with other contemporary megatherioid sloths. Comprehensive descriptions of the teeth of Eucholaeops allow us to generate a nomenclature for describing the inferred occlusal pattern analogous to that applied to other mammals. Based on examination and mapping of occlusal wear facets, we reconstruct two distinct jaw movements during the power stroke. One corresponds to the basic therian pattern equivalent to Phase I: the working side mandibular corpus is moved dorsally, mainly orthally but also anteriorly and slightly medially; the result is puncturing, tearing and shearing of food. The second is a distinct and unrelated movement of the working side corpus dorsally, mainly orthally, but also posteriorly and slightly medially; the dominant result is to produce shearing of food. The analysis of the tooth wear facets, combined with the shape of the temporomandibular joint, the presence of a fused mandibular symphysis, and a well-developed temporalis muscle, indicates that the orthal component was predominant during mastication. Eucholaeops, and probably nearly all other Miocene megatherioids, were most likely leaf eaters and the primary method of food reduction must have been by shearing or cutting.

[1]  G. Ré,et al.  THE TORO NEGRO MEGATHERIINE (MAMMALIA, XENARTHRA): A NEW SPECIES OF PYRAMIODONTHERIUM AND A REVIEW OF PLESIOMEGATHERIUM , 2004 .

[2]  B. Patterson,et al.  The Fossil Mammal Fauna of South America , 1968, The Quarterly Review of Biology.

[3]  J. J. Flynn,et al.  Paleogene Pseudoglyptodont Xenarthrans from Central Chile and Argentine Patagonia , 2006 .

[4]  H. Gregory McDonald,et al.  The evolution of the feeding adaptations in the aquatic sloths (Thalassocnus, Nothrotheriidae) of the Pisco Formation (Neogene of Peru). , 2004 .

[5]  W. Greaves EVOLUTION OF THE MERYCOIDODONT MASTICATORY APPARATUS (MAMMALIA, ARTIODACTYLA) , 1972, Evolution; international journal of organic evolution.

[6]  A. Carlini,et al.  The oldest Megalonychidae (Xenarthra:Tardigrada); phylogenetic relationships and an emended diagnosis of the family , 2004 .

[7]  D. Grady,et al.  Nutrition: An Anti-Cancer Diet?. , 1984 .

[8]  V. Naples,et al.  Form and function of the masticatory musculature in the tree sloths, Bradypus and Choloepus , 1985, Journal of morphology.

[9]  K. Hiiemae,et al.  Trends in the Evolution of Primate Mastication , 1972, Nature.

[10]  R. E. Blanco,et al.  LIMB BONE PROPORTIONS, STRENGTH AND DIGGING IN SOME LUJANIAN (LATE PLEISTOCENE-EARLY HOLOCENE) MYLODONTID GROUND SLOTHS (MAMMALIA, XENARTHRA) , 2000 .

[11]  D. Brandoni A review of Pliomegatherium Kraglievich, 1930 (Xenarthra: Phyllophaga: Megatheriidae) , 2006 .

[12]  M. Bargo,et al.  Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada) , 2006, Journal of morphology.

[13]  R. Owen Description of the skeleton of an extinct gigantic sloth, Mylodon robustus, Owen, with observations on the osteology, natural affinities, and probable habits of the megatherioid quadrupeds in general , 1842 .

[14]  T. Gaudin The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra) , 1995 .

[15]  Bargo The ground sloth Megatherium americanum: Skull shape, bite forces, and diet , 2001 .

[16]  J. Rensberger An occlusion model for mastication and dental wear in herbivorous mammals , 1973 .

[17]  H. Gregory McDonald,et al.  An aquatic sloth from the Pliocene of Peru , 1995, Nature.

[18]  M. Mckenna Edentates: the evolution and ecology of armadillos, sloths, and vermilinguas. , 1986, Science.

[19]  F. Ameghino Contribucion al conocimiento de los mamiferos fosiles de la República Argentina. : Obra escrita bajo los auspicios de la Academia nacional de ciencias de la República Argentina para ser presentada á la Exposicion universal de Paris de 1889 / , 1889 .

[20]  V. Naples The feeding mechanism in the Pleistocene ground sloth, Glossotherium , 1989, Contributions in science.

[21]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[22]  T. Gaudin Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence , 2004 .

[23]  Hilary Gonzalez,et al.  Functional Vertebrate Morphology , 1986, The Yale Journal of Biology and Medicine.

[24]  D. Brandoni,et al.  The pes of Pyramiodontherium bergi (Moreno & Mercerat, 1891) (Mammalia, Xenarthra, Phyllophaga): the most complete pes of a Tertiary Megatheriinae , 2004 .

[25]  G.J. Scillato-Yané,et al.  An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica , 1995, Antarctic Science.

[26]  R. F. Kay,et al.  The functional adaptations of primate molar teeth. , 1975, American journal of physical anthropology.

[27]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[28]  Carlos Couto Tratado de paleomastozoologia , 1979 .

[29]  Kirk R. Johnson,et al.  Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. , 1998, American journal of physical anthropology.

[30]  P. M. Butler,et al.  Development, function and evolution of teeth , 1978 .

[31]  F. Ameghino Enumeración sistemática de las especies de mamíferos fósiles coleccionados por Carlos Ameghino en los terrenos eocenos de la Patagonia austral y depositados en el Museo de La Plata , 1887 .

[32]  H. Gregory McDonald,et al.  THE LARGE SCELIDOTHERE CATONYX TARIJENSIS (XENARTHRA, MYLODONTIDAE) FROM THE PLEISTOCENE OF URUGUAY , 2002 .

[33]  T. Gaudin,et al.  The Ear Region in Xenarthrans ( = Edentata: Mammalia) , 2015 .

[34]  V. Naples Cranial osteology and function in the tree sloths, Bradypus and Choloepus. American Museum novitates ; no. 2739 , 1982 .

[35]  G. Simpson The beginning of the age of mammals in South America. Part 1, Introduction : Systematics : Marsupialia, Edentata, Condylarthra, Litopterna and Notioprogonia. Bulletin of the AMNH ; v. 91, article 1 , 1948 .

[36]  Florennino Ameghino Nuevos restos de mamíferos fósiles descubiertos por Carlos Ameghino en el Eoceno inferior de la Patagonia australp — Especies nuevasc adiciones y correcciones , 1891 .

[37]  K. Hiiemae,et al.  How Mammalian Teeth Work , 1969 .

[38]  Carl von Linné Systema Naturae: Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis, , 2011 .

[39]  J. B. Hatcher Scientific Books: Reports of the Princeton University Expeditions to Patagonia, 1896-1899; , 2012 .

[40]  M. Bargo,et al.  Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus , 2008 .

[41]  George Gaylord Simpson,et al.  The Principles of Classification and a Classification of Mammals. , 1945 .

[42]  A. Crompton,et al.  Functional Occlusion in Tribosphenic Molars , 1969, Nature.

[43]  K. Hiiemae Mammalian mastication : a review of the activity of the jaw muscles and the movements they produce in chewing , 1978 .

[44]  Johann Karl Wilhelm Illiger,et al.  Caroli Illigeri ... Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica. , 1811 .

[45]  G. D. Iuliis,et al.  Relationships of the Megatheriinae, Nothrotheriinae, and Planopsinae: some skeletal characteristics and their importance for phylogeny , 1995 .

[46]  H. Gregory McDonald,et al.  THE EVOLUTION OF FEEDING ADAPTATIONS OF THE AQUATIC SLOTH THALASSOCNUS , 2004 .

[47]  R. Fariña,et al.  BODY MASS ESTIMATIONS IN LUJANIAN (LATE PLEISTOCENE-EARLY HOLOCENE OF SOUTH AMERICA) MAMMAL MEGAFAUNA , 1998 .

[48]  Jennifer L. White Indicators of locomotor habits in xenarthrans: Evidence for locomotor heterogeneity among fossil sloths , 1993 .

[49]  Fl. Ameghino Énumération synoptique des espèces de mammifères fossiles des formations éocènes de Patagonie , 1894 .

[50]  Van Soest Nonnutritive Residues: A System of Analysis for the Replacement of Crude Fiber , 1966 .

[51]  G. Engelmann A New Deseadan Sloth (Mammalia: Xenarthra) from Salla, Bolivia, and Its Implications for the Primitive Condition of the Dentition in Edentates , 1987 .

[52]  L. Werdelin,et al.  A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history , 2007 .

[53]  George Gaylord Simpson,et al.  Classification of mammals : above the species level , 1997 .

[54]  Jennifer L. White,et al.  The Sloths of the West Indies: A Systematic and Phylogenetic Review , 2001 .