Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section

[1]  Martin Frank,et al.  The GEOTRACES Intermediate Data Product 2017 , 2018, Chemical Geology.

[2]  M. Charette,et al.  Determination of particulate and dissolved 228Th in seawater using a delayed coincidence counter , 2015 .

[3]  M. Charette,et al.  Radium isotope distributions during the US GEOTRACES North Atlantic cruises , 2015 .

[4]  E. Boyle,et al.  Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic sections , 2015 .

[5]  K. Buesseler,et al.  Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean , 2015 .

[6]  S. B. Moran,et al.  230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes , 2015 .

[7]  E. Boyle,et al.  Introduction to the U.S. GEOTRACES North Atlantic Transect (GA-03): USGT10 and USGT11 cruises , 2015 .

[8]  P. Lam,et al.  Cycling of lithogenic marine particles in the US GEOTRACES North Atlantic transect , 2015 .

[9]  P. Lam,et al.  Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect , 2015 .

[10]  S. B. Moran,et al.  Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean , 2015 .

[11]  R. Edwards,et al.  Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry , 2013 .

[12]  S. Jaccard,et al.  A new perspective on boundary scavenging in the North Pacific Ocean , 2013 .

[13]  M. Charette,et al.  Methodological advances for measuring low-level radium isotopes in seawater , 2013, Journal of Radioanalytical and Nuclear Chemistry.

[14]  P. Mazzega,et al.  Nonlinear Inversions of a Model of the Oceanic Dissolved‐Particulate Exchanges , 2013 .

[15]  R. Edwards,et al.  High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols , 2012 .

[16]  P. Lam,et al.  Getting good particles: Accurate sampling of particles by large volume in‐situ filtration , 2012 .

[17]  S. B. Moran,et al.  Intercalibration studies of short‐lived thorium‐234 in the water column and marine particles , 2012 .

[18]  O. Marchal,et al.  What can paired measurements of Th isotope activity and particle concentration tell us about particle cycling in the ocean , 2012 .

[19]  H. Obata,et al.  230Th and 232Th distributions in mid-latitudes of the North Pacific Ocean: Effect of bottom scavenging , 2012 .

[20]  S. B. Moran,et al.  GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be , 2012 .

[21]  K. Buesseler,et al.  Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U–234Th disequilibrium method , 2011 .

[22]  C. Stirling,et al.  Precise determination of the open ocean 234U/238U composition , 2010 .

[23]  A. Rinaldo,et al.  Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity , 2010 .

[24]  K. Buesseler,et al.  Variability in the average sinking velocity of marine particles , 2010 .

[25]  P. Masqué,et al.  Role of slowly settling particles in the ocean carbon cycle , 2010 .

[26]  S. Wakeham,et al.  Settling velocity spectra and the ballast ratio hypothesis , 2009 .

[27]  S. Fowler,et al.  Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea , 2009 .

[28]  J. Bishop Autonomous observations of the ocean biological carbon pump , 2009 .

[29]  C. Jeandel,et al.  Particle dynamics study in the wake of Kerguelen Island using thorium isotopes , 2008 .

[30]  P. Stoffers,et al.  Advection and scavenging: Effects on 230Th and 231Pa distribution off Southwest Africa , 2008 .

[31]  O. Marchal,et al.  Contribution of 230Th measurements to the estimation of the abyssal circulation , 2007 .

[32]  M. Charette,et al.  234Th sorption and export models in the water column: A review , 2006 .

[33]  C. Wunsch Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications , 2006 .

[34]  L. Stramma,et al.  Water masses and currents in the upper tropical northeast Atlantic off northwest Africa , 2005 .

[35]  Dimitrios V. Vayenas,et al.  Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies , 2005 .

[36]  M. Frank,et al.  230Th-normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[37]  E. Bard,et al.  New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea , 2002 .

[38]  S. B. Moran,et al.  Dissolved and particulate 231 Pa and 230 Th in the Atlantic Ocean: constraints on intermediate/deep water age, boundary scavenging, and 231 Pa/ 230 Th fractionation , 2002 .

[39]  L. Coppola,et al.  Thorium isotopes in the western Mediterranean Sea: an insight into the marine particle dynamics , 2002 .

[40]  J. T. Turner Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms , 2002 .

[41]  C. Jeandel,et al.  Selecting a global optimization method to estimate the oceanic particle cycling rate constants , 2000 .

[42]  Smith,et al.  Protactinium-231 and thorium-230 abundances and high scavenging rates in the western arctic ocean , 1998, Science.

[43]  J. Scholten,et al.  230Th in the eastern North Atlantic: the importance of water mass ventilation in the balance of230Th , 1998 .

[44]  Herlé Mercier,et al.  An inverse model of the eastern North Atlantic general circulation and thermocline ventilation , 1997 .

[45]  M. Charette,et al.  Distribution of 230Th in the Labrador Sea and its relation to ventilation , 1997 .

[46]  J. Toole,et al.  Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean , 1996, Nature.

[47]  E. Yu,et al.  Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data , 1996, Nature.

[48]  R. Murnane,et al.  Least-squares estimates of thorium, particle, and nutrient cycling rate constants from the JGOFS North Atlantic Bloom Experiment , 1996 .

[49]  M. Suter,et al.  Increased biological productivity and export production in the glacial Southern Ocean , 1995, Nature.

[50]  R. Murnane,et al.  Determination of thorium and particulate matter cycling parameters at station P: A reanalysis and comparison of least squares techniques , 1994 .

[51]  J. Sarmiento,et al.  Estimates of particle- and thorium-cycling rates in the northwest Atlantic Ocean , 1994 .

[52]  K. Buesseler,et al.  Thorium isotopes as indicators of particle dynamics in the upper ocean: results from the JGOFS North Atlantic Bloom experiment , 1993 .

[53]  P. L. Traon,et al.  An Inverse Model of the North Atlantic General Circulation Using Lagrangian Float Data , 1993 .

[54]  R. Anderson,et al.  231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity , 1993, Nature.

[55]  G. Berger,et al.  Scavenging of 230Th and 231Pa near the antarctic polar front in the South Atlantic , 1993 .

[56]  W. Schmitz,et al.  On the North Atlantic Circulation , 1993 .

[57]  S. Clegg,et al.  Application of a generalized scavenging model to thorium isotope and particle data at equatorial and high‐latitude sites in the Pacific Ocean , 1991 .

[58]  M. Mccartney,et al.  Eastward flow through the Mid-Atlantic Ridge at 11°N and its influence on the abyss of the Eastern Basin , 1991 .

[59]  J. Sarmiento,et al.  Thorium isotopes, particle cycling models, and inverse calculations of model rate constants , 1990 .

[60]  S. Clegg,et al.  A generalized model for the scavenging of trace metals in the open ocean—I. Particle cycling , 1990 .

[61]  Satya N. Mishra,et al.  Modern Mathematical Statistics , 1990 .

[62]  P. Santschi,et al.  A Brownian-pumping model for oceanic trace metal scavenging : Evidence from Th isotopes , 1989 .

[63]  H. Mercier A study of the time-averaged circulation in the western North Atlantic by simultaneous nonlinear inversion of hydrographic and current meter data , 1989 .

[64]  L. Balistrieri,et al.  Oceanic trace metal scavenging: the importance of particle concentration , 1988 .

[65]  H. Yang,et al.  Scavenging of thorium in the ocean , 1987 .

[66]  G. Wasserburg,et al.  238 U, 234 U and 232 Th in seawater , 1986 .

[67]  H. Mercier Determining the general circulation of the ocean: A nonlinear inverse problem , 1986 .

[68]  T. Nakanishi,et al.  231Pa and 230Th profiles in the open ocean water column , 1985 .

[69]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[70]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[71]  R. Anderson,et al.  Distribution of thorium isotopes between dissolved and particulate forms in the deep sea , 1982 .

[72]  H. Tsubota,et al.  The water column distributions of thorium isotopes in the western North Pacific , 1981 .

[73]  S. Krishnaswami,et al.  Chemical and radiochemical investigations of surface and deep particles of the Indian Ocean , 1981 .

[74]  K. Knauss,et al.  Uranium in open ocean: concentration and isotopic composition☆ , 1977 .

[75]  K. Turekian The fate of metals in the oceans , 1977 .

[76]  R. Weiss,et al.  Large-volume in-situ filtration of deep Pacific waters: Mineralogical and radioisotope studies , 1976 .

[77]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[78]  H. W. Kirby,et al.  NEUTRON-CAPTURE CROSS SECTION OF ACTINIUM-227 , 1956 .

[79]  Konrad B. Krauskopf,et al.  Factors controlling the concentrations of thirteen rare metals in sea-water , 1956 .

[80]  Edward D. Goldberg,et al.  Marine Geochemistry 1. Chemical Scavengers of the Sea , 1954, The Journal of Geology.

[81]  Maurice G. Kendall,et al.  Rank Correlation Methods , 1949 .

[82]  G. B. Knight,et al.  Half-Life of UX$sub 1$(Th$sub 234$) , 1948 .

[83]  R. Edwards,et al.  Improvements in 230 Th dating , 230 Th and 234 U half-life values , and U – Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry , 2013 .

[84]  R. Edwards,et al.  GEOTRACES intercalibration of 230 Th, 232 Th, 231 Pa, and prospects for 10 Be LIMNOLOGY OCEANOGRAPHY: METHODS , 2012 .

[85]  K. Buesseler,et al.  Re-evaluating the 238 U-salinity relationship in seawater : Implications for the 238 U – 234 Th disequilibrium method , 2011 .

[86]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[87]  M. Frank,et al.  230 Th normalization : An essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[88]  M. Brzezinski,et al.  Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W , 2001 .

[89]  K. Buesseler,et al.  Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean , 2000 .

[90]  S. B. Moran,et al.  A coupled adsorption–aggregation model of the POC/ ratio of marine particles , 2000 .

[91]  J. Scholten,et al.  Distribution of 230Th and 231Pa in the water column in relation to the ventilation of the deep Arctic basins , 1995 .

[92]  S. Clegg,et al.  A generalized model for the scavenging of trace metals in the open ocean—II. Thorium scavenging , 1991 .

[93]  L. V. Worthington On the North Atlantic Circulation , 1977 .

[94]  Gordon A. Riley,et al.  Particulate Organic Matter in Sea Water , 1971 .

[95]  Rama,et al.  234Th/238U ratios in the ocean , 1968 .