Coalgebraic Update Lenses
暂无分享,去创建一个
[1] Bart Jacobs,et al. Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.
[2] Benjamin C. Pierce,et al. Combinators for bi-directional tree transformations: a linguistic approach to the view update problem , 2005, POPL '05.
[3] Michael Johnson,et al. Relating Algebraic and Coalgebraic Descriptions of Lenses , 2012, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..
[4] Martin Hofmann,et al. Edit lenses , 2012, POPL '12.
[5] Miki Tanaka,et al. Pseudo-Distributive Laws and a Unified Framework for Variable Binding , 2004 .
[6] Martin Hofmann,et al. Symmetric lenses , 2011, POPL '11.
[7] Michael Johnson,et al. Delta Lenses and Opfibrations , 2013, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..
[8] John Power,et al. Combining a monad and a comonad , 2002, Theor. Comput. Sci..
[9] Tarmo Uustalu,et al. Update Monads: Cointerpreting Directed Containers , 2013, TYPES.
[10] Michael Johnson,et al. Spans of lenses , 2014, EDBT/ICDT Workshops.
[11] M. Barr,et al. Toposes, Triples and Theories , 1984 .
[12] Russell O'Connor. Functor is to Lens as Applicative is to Biplate: Introducing Multiplate , 2011, ArXiv.
[13] P. T. Johnstone,et al. TOPOSES, TRIPLES AND THEORIES (Grundlehren der mathematischen Wissenschaften 278) , 1986 .
[14] Michael Johnson,et al. Algebras and Update Strategies , 2010, J. Univers. Comput. Sci..
[15] John Power,et al. From Comodels to Coalgebras: State and Arrays , 2004, CMCS.
[16] A. Mikhalev,et al. Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. A Handbook for Students and Researchers , 2011 .
[17] Benjamin C. Pierce,et al. Quotient lenses , 2008, ICFP.
[18] Tarmo Uustalu,et al. When is a container a comonad? , 2012, Log. Methods Comput. Sci..
[19] Ulrich Knauer,et al. Monoids, acts, and categories , 2000 .
[20] Thorsten Altenkirch,et al. Containers: Constructing strictly positive types , 2005, Theor. Comput. Sci..
[21] Krzysztof Czarnecki,et al. From State- to Delta-Based Bidirectional Model Transformations: the Asymmetric Case , 2011, J. Object Technol..
[22] S. Eilenberg,et al. Adjoint functors and triples , 1965 .