Experimental and theoretical studies of native deep-level defects in transition metal dichalcogenides

[1]  K. Thygesen,et al.  Quantum point defects in 2D materials - the QPOD database , 2021, npj Computational Materials.

[2]  Kenji Watanabe,et al.  Free Trions with Near-Unity Quantum Yield in Monolayer MoSe2. , 2021, ACS nano.

[3]  D. Morgan,et al.  Modified band alignment method to obtain hybrid functional accuracy from standard DFT: Application to defects in highly mismatched III-V:Bi alloys , 2021, Physical Review Materials.

[4]  M. Chhowalla,et al.  Making clean electrical contacts on 2D transition metal dichalcogenides , 2021, Nature Reviews Physics.

[5]  Lizhi Zhang,et al.  Selective Antisite Defect Formation in WS2 Monolayers via Reactive Growth on Dilute W‐Au Alloy Substrates , 2021, Advanced materials.

[6]  S. Tongay,et al.  Probing Defects in MoS2 Van der Waals Crystal through Deep‐Level Transient Spectroscopy , 2020, physica status solidi (RRL) – Rapid Research Letters.

[7]  Shuang Li,et al.  Synthesis of Semiconducting 2H-Phase WTe2 Nanosheets with Large Positive Magnetoresistance. , 2020, Inorganic chemistry.

[8]  J. Miao,et al.  Chemical trends of deep levels in van der Waals semiconductors , 2020, Nature Communications.

[9]  R. Hennig,et al.  Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections , 2020, Physical Review Materials.

[10]  P. Blaha,et al.  Nonlocal van der Waals functionals for solids: Choosing an appropriate one , 2019, Physical Review Materials.

[11]  S. Louie,et al.  Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides , 2018, Nature Communications.

[12]  Aleksandr V. Terentjev,et al.  Dispersion-corrected PBEsol exchange-correlation functional , 2018, Physical Review B.

[13]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[14]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2018, Nano letters.

[15]  Qiang Zhang,et al.  Evidence for topological type-II Weyl semimetal WTe2 , 2017, Nature Communications.

[16]  Beng Kang Tay,et al.  Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ‐2e Method) , 2017 .

[17]  Matěj Velický,et al.  From two-dimensional materials to their heterostructures: An electrochemist's perspective , 2017 .

[18]  Zhenhua Ni,et al.  Defect Activated Photoluminescence in WSe2 Monolayer , 2017 .

[19]  Jonghwan Kim,et al.  On Optical Dipole Moment and Radiative Recombination Lifetime of Excitons in WSe2 , 2017 .

[20]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[21]  J. Perdew,et al.  Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials , 2017 .

[22]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[23]  Jonghwan Kim,et al.  Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures , 2016, Science Advances.

[24]  Zhenhua Ni,et al.  Spectroscopic investigation of defects in two-dimensional materials , 2016, 1611.03149.

[25]  J. Perdew,et al.  Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation , 2016 .

[26]  L. Tapasztó,et al.  The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy , 2016, Scientific Reports.

[27]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[28]  T. Mallouk,et al.  Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS_2 monolayers produced by different growth methods , 2016 .

[29]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[30]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[31]  A. Krasheninnikov,et al.  Native defects in bulk and monolayer MoS 2 from first principles , 2015 .

[32]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[33]  Bin Yu,et al.  Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. , 2015, ACS nano.

[34]  B. Jonker,et al.  Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2 , 2014, 1412.2156.

[35]  J. Y. Kwak,et al.  Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts. , 2014, Nano letters.

[36]  Li-Min Wang,et al.  Bandgap and doping effects in MoS2 measured by Scanning Tunneling Microscopy and Spectroscopy , 2014, 1405.2367.

[37]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[38]  I. Hamada van der Waals density functional made accurate , 2014 .

[39]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[40]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[41]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[42]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[43]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[44]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[45]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[46]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[47]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[48]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[49]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[50]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[51]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[52]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[53]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[54]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[55]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[56]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[58]  A. Pasquarello,et al.  Defect energy levels in density functional calculations: alignment and band gap problem. , 2008, Physical review letters.

[59]  P. Krüger,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001, cond-mat/0107541.

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  E. Weber Imperfections in III/V materials , 1993 .

[64]  Peter Blood,et al.  The Electrical Characterization of Semiconductors: Majority Carriers and Electron States , 1992 .

[65]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[66]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[67]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[68]  F. Jellinek,et al.  Crystal structures of tungsten disulfide and diselenide , 1987 .

[69]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[70]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[71]  H. G. Smith,et al.  Lattice dynamics of hexagonal Mo S 2 studied by neutron scattering , 1975 .

[72]  D. Lang Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors , 1974 .

[73]  P. B. James,et al.  The crystal structure of MoSe2 , 1963 .

[74]  R. Newnham,et al.  The crystal structure of MoTe2 , 1961 .