Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach

[1]  Klaus Schulten,et al.  Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. , 2014, Biochimica et biophysica acta.

[2]  S. Scheuring,et al.  The architecture of Rhodobacter sphaeroides chromatophores. , 2014, Biochimica et biophysica acta.

[3]  T. Sharkey Advances in photosynthesis and respiration , 2012, Photosynthesis Research.

[4]  J. Lavergne,et al.  Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. , 2010, Biochimica et biophysica acta.

[5]  D. Stokes,et al.  Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles , 2010, Molecular microbiology.

[6]  R. Niederman Eukaryotic behaviour of a prokaryotic energy‐transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane , 2010, Molecular microbiology.

[7]  J. Sturgis,et al.  Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus. , 2008, Biochimica et biophysica acta.

[8]  F. Gubellini,et al.  Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. , 2007, Biochimica et biophysica acta.

[9]  Van Niel The Bacterial Photosyntheses and Their Importance for the General Problem of Photosynthesis , 2006 .

[10]  A. Mulkidjanian,et al.  Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each. , 2002, Biophysical journal.

[11]  F. Rappaport,et al.  A NEW HIGH-SENSITIVITY 10-NS TIME-RESOLUTION SPECTROPHOTOMETRIC TECHNIQUE ADAPTED TO IN VIVO ANALYSIS OF THE PHOTOSYNTHETIC APPARATUS , 1999 .

[12]  P. Gans,et al.  Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans , 1993, Archives of Microbiology.

[13]  K. Shimada,et al.  Electrochromic spectral band shift of carotenoids in the photosynthetic membranes of Rhodospirillum molischianum and Rhodospirillum photometricum , 1993 .

[14]  W. Junge,et al.  Gramicidin in chromatophores of Rhodobacter sphaeroides , 1991, European Biophysics Journal.

[15]  A. Verméglio,et al.  Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudomonas capsulata , 1986 .

[16]  M. Rugolo,et al.  Oxygen-induced inhibition of light-dependent uptake of tetraphenylphosphonium ions as a probe of a direct interaction between photosynthetic and respiratory components in cells of Rhodopseudomonas capsulata. , 1983, Biochemical and biophysical research communications.

[17]  J. Jackson,et al.  Interaction between the respiratory and photosynthetic electron transport chains of intact cells of Rhodopseudomonas capsulata mediated by membrane potential. , 1983, European journal of biochemistry.

[18]  A. McEwan,et al.  A nitrate reductase activity in Rhodopseudomonas capsulata linked to electron transfer and generation of a membrane potential , 1982 .

[19]  M. Nishimura,et al.  Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudomonas sphaeroides. , 1979, Biochimica et biophysica acta.

[20]  T. Satoh Light-activated,-inhibited and-independent denitrification by a denitrifying phototrophic bacterium , 1977, Archives of Microbiology.

[21]  M. Nishimura,et al.  Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. , 1977, Biochimica et biophysica acta.

[22]  A. Crofts,et al.  Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. , 1975, Biochimica et biophysica acta.

[23]  A. G. Marr,et al.  Location of Chlorophyll in Rhodospirillum rubrum , 1965, Journal of bacteriology.

[24]  G. Cohen-bazire,et al.  THE FINE STRUCTURE OF RHODOSPIRILLUM RUBRUM , 1963, The Journal of cell biology.

[25]  R. Wolfe,et al.  THE STRUCTURE OF PHOTOSYNTHETIC BACTERIA , 1958, Journal of bacteriology.

[26]  A. Frenkel LIGHT INDUCED PHOSPHORYLATION BY CELL-FREE PREPARATIONS OF PHOTOSYNTHETIC BACTERIA1 , 1954 .

[27]  H. K. Schachman,et al.  Chromatophores of Rhodospirillum rubrum , 1952, Nature.

[28]  A. McEwan,et al.  The Inhibition of Nitrate Reduction by Light in Rhodopseudomonas Capsulata is Mediated by the Membrane Potential, but Inhibition by Oxygen is Not , 1984 .

[29]  C. Sybesma,et al.  Advances in Photosynthesis Research , 1984, Advances in Agricultural Biotechnology.

[30]  Pierre Joliot,et al.  Une nouvelle méthode spectrophotométrique destinée à l'étude des réactions photosynthétiques , 1980 .

[31]  A. Crofts,et al.  The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. , 1971, European journal of biochemistry.

[32]  A. Baccarini-Melandri,et al.  [50] Partial resolution of the photophosphorylating system of Rhodopseudomonas capsulata , 1971 .