FDTD Modelling of Transformation Electromagnetics Based Devices

Transformation Electromagnetics (TE), often referred to as Transformation Optics (TO), is a subject area of much interest worldwide, along with the topic of metamaterials. The concept was introduced through a demonstration of invisible cloaks, comprised of a shell of metamaterials engineered to route electromagnetic waves around an object, so as to render it “invisible”. Although the performance of an invisible cloak does not always live up to its expectations, the potential of the underlying TE approach has a much wider applicability than cloaking alone, covering important areas such as communications, energy transfer, sensors and security. In this chapter, the fundamental design issues pertaining to TE-based devices are examined from the perspective of numerical modelling. The FDTD technique is employed to illustrate the key concepts and to identify the challenges encountered in implementing the TE-based designs. Current and future trends of FDTD modelling related to this topic are discussed.

[1]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  M. Qiu,et al.  Cylindrical invisibility cloak with simplified material parameters is inherently visible. , 2007, Physical review letters.

[3]  S. Anantha Ramakrishna,et al.  Focusing light using negative refraction , 2003 .

[4]  Wei Yang,et al.  Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks , 2012, J. Comput. Phys..

[5]  D. F. Nelson,et al.  Maxwell equations in material form , 1976 .

[6]  Qiang Cheng,et al.  CORRIGENDUM: Arbitrarily elliptical cylindrical invisible cloaking , 2008 .

[7]  S. Maci,et al.  Alternative derivation of electromagnetic cloaks and concentrators , 2007, 0710.2933.

[8]  Ulf Leonhardt,et al.  Geometry and light: The science of invisibility , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[9]  Yang Hao,et al.  Design of a Carpet Cloak to Conceal an Antenna Located Underneath , 2012, IEEE Transactions on Antennas and Propagation.

[10]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[11]  J. Pendry,et al.  Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. , 2007, Optics letters.

[12]  N. Engheta,et al.  Multifrequency optical invisibility cloak with layered plasmonic shells. , 2008, Physical review letters.

[13]  R. Ziolkowski,et al.  Superluminal transmission of information through an electromagnetic metamaterial. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[16]  T. Cui,et al.  Analytical design of conformally invisible cloaks for arbitrarily shaped objects. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[18]  Jeong-Hae Lee,et al.  Effective medium approach of left-handed material using a dispersive FDTD method , 2005 .

[19]  Francisco Medina,et al.  Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments , 2005 .

[20]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[21]  Claudio G. Parazzoli,et al.  Origin of dissipative losses in negative index of refraction materials , 2003 .

[22]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[23]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[24]  Y. Hao,et al.  A Radially-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks , 2008, IEEE Transactions on Antennas and Propagation.

[25]  Sergei A. Tretyakov,et al.  Research on negative refraction and backward-wave media: A historical perspective , 2005 .

[26]  T. Cui,et al.  Arbitrarily elliptical–cylindrical invisible cloaking , 2008 .

[27]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[28]  Yang Hao,et al.  Use of conjugate dielectric and metamaterial slabs as radomes , 2007 .

[29]  Yang Hao,et al.  Finite-Difference Time-Domain Study of Guided Modes in Nano-Plasmonic Waveguides , 2007, IEEE Transactions on Antennas and Propagation.

[30]  J. Huangfu,et al.  Planar focusing antenna design by using coordinate transformation technology , 2007 .

[31]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[32]  Yanfen Hao,et al.  Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes , 1998 .

[33]  David R. Smith,et al.  Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces , 2008 .

[34]  J. B. Cole,et al.  Cylindrical invisibility cloak based on photonic crystal layers that permits communication with the outside , 2012 .

[35]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[36]  Jin Au Kong,et al.  Time domain simulation of electromagnetic cloaking structures with TLM method. , 2008, Optics express.

[37]  P. Bevelacqua,et al.  Finite-difference and pseudospectral time-domain methods applied to backward-wave metamaterials , 2004, IEEE Transactions on Antennas and Propagation.

[38]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[39]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[40]  R. Osgood,et al.  Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Huanyang Chen,et al.  Transformation media that rotate electromagnetic fields , 2007, physics/0702050.

[42]  K. Rajab,et al.  All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam , 2011, New Journal of Physics.

[43]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[44]  Xiangang Luo,et al.  Design of electromagnetic refractor and phase transformer using coordinate transformation theory. , 2008, Optics express.

[45]  Joe LoVetri,et al.  A comparison of numerical techniques for modeling electromagnetic dispersive media , 1995 .

[46]  Yang Hao,et al.  Slim Luneburg lens for antenna applications. , 2011, Optics express.

[47]  E. J. Post Formal Structure of Electromagnetics: General Covariance and Electromagnetics , 1997 .

[48]  Y. Hao,et al.  Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. , 2008, Optics express.

[49]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[50]  Yu Luo,et al.  Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations , 2007, 0712.2027.

[51]  S. Maci,et al.  A Cloaking Metamaterial Based on an Inhomogeneous Linear Field Transformation , 2010, IEEE Transactions on Antennas and Propagation.

[52]  Doyeol Ahn,et al.  Dispersive full-wave finite-difference time-domain analysis of the bipolar cylindrical cloak based on the effective medium approach , 2013 .

[53]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[54]  An Ping Zhao,et al.  Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media , 1998 .

[55]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Y. Hao,et al.  Ground-plane quasicloaking for free space , 2009, 0902.1692.

[57]  Tie Jun Cui,et al.  Compact-sized and broadband carpet cloak and free-space cloak. , 2009, Optics express.

[58]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[59]  Y. Hao,et al.  A broadband zone plate lens from transformation optics. , 2011, Optics express.

[60]  Hong-Bo Sun,et al.  FDTD Study on the Invisibility Performance of Two-Dimensional Cylindrical Cloak With Off-Plane Incidence , 2012, Journal of Lightwave Technology.

[61]  D. Werner,et al.  Two-dimensional eccentric elliptic electromagnetic cloaks , 2008 .

[62]  Didier Lippens,et al.  An all-dielectric route for terahertz cloaking. , 2008, Optics express.

[63]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[64]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[65]  J. Yamauchi,et al.  A Frequency-Dependent LOD-FDTD Method and Its Application to the Analyses of Plasmonic Waveguide Devices , 2010, IEEE Journal of Quantum Electronics.

[66]  A. Borisov,et al.  Tunneling mechanism of light transmission through metallic films. , 2005, Physical review letters.

[67]  T. Cui,et al.  Optical Transformation Theory , 2010 .

[68]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[69]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[70]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[71]  Yang Hao,et al.  A Coordinate Transformation-Based Broadband Flat Lens via Microstrip Array , 2011, IEEE Antennas and Wireless Propagation Letters.

[72]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[73]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[74]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[75]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[76]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[77]  Yang Hao,et al.  Wideband Beam-Steerable Flat Reflectors via Transformation Optics , 2011, IEEE Antennas and Wireless Propagation Letters.

[78]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[79]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[80]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[81]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[82]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.

[83]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[84]  J. Yamauchi,et al.  Frequency-Dependent 3-D LOD-FDTD Method for the Analysis of Plasmonic Devices , 2011, IEEE Photonics Technology Letters.

[85]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .