High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution

[1]  A. Camilli,et al.  Genome‐Wide Fitness and Genetic Interactions Determined by Tn‐seq, a High‐Throughput Massively Parallel Sequencing Method for Microorganisms , 2014, Current protocols in molecular biology.

[2]  Raul Andino,et al.  Mutational and fitness landscapes of an RNA virus revealed through population sequencing , 2013, Nature.

[3]  Rong Hai,et al.  Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins , 2013, Proceedings of the National Academy of Sciences.

[4]  Jeffrey A. Hussmann,et al.  High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing , 2013, Proceedings of the National Academy of Sciences.

[5]  W. Robins,et al.  Coupling mutagenesis and parallel deep sequencing to probe essential residues in a genome or gene , 2013, Proceedings of the National Academy of Sciences.

[6]  Thomas S. Brettin,et al.  The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation , 2012, PloS one.

[7]  Nicholas C. Wu,et al.  Systematic Identification of H274Y Compensatory Mutations in Influenza A Virus Neuraminidase by High-Throughput Screening , 2012, Journal of Virology.

[8]  D. Baker,et al.  Principles for designing ideal protein structures , 2012, Nature.

[9]  L. Poon,et al.  Entry of Influenza A Virus with a α2,6-Linked Sialic Acid Binding Preference Requires Host Fibronectin , 2012, Journal of Virology.

[10]  Timothy A. Whitehead,et al.  Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing , 2012, Nature Biotechnology.

[11]  C. Macken,et al.  Functional Analysis of Conserved Motifs in Influenza Virus PB1 Protein , 2012, PloS one.

[12]  R. Webster,et al.  Drugs in Development for Influenza , 2010, Drugs.

[13]  A. Pekosz,et al.  Mutations in the Membrane-Proximal Region of the Influenza A Virus M2 Protein Cytoplasmic Tail Have Modest Effects on Virus Replication , 2011, Journal of Virology.

[14]  Chi‐Huey Wong,et al.  Vaccine design of hemagglutinin glycoprotein against influenza. , 2011, Trends in biotechnology.

[15]  Eduardo Abeliuk,et al.  The essential genome of a bacterium , 2011, Molecular systems biology.

[16]  J. Skehel,et al.  A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins , 2011, Science.

[17]  K. Kinzler,et al.  Detection and quantification of rare mutations with massively parallel sequencing , 2011, Proceedings of the National Academy of Sciences.

[18]  Paul T. J. Tan,et al.  Highly conserved influenza A sequences as T cell epitopes-based vaccine targets to address the viral variability , 2011, Human vaccines.

[19]  D. Baker,et al.  Role of conformational sampling in computing mutation‐induced changes in protein structure and stability , 2011, Proteins.

[20]  G. Whittaker,et al.  Modifications to the Hemagglutinin Cleavage Site Control the Virulence of a Neurotropic H1N1 Influenza Virus , 2010, Journal of Virology.

[21]  Thorsten Wolff,et al.  Interplay between influenza A virus and the innate immune signaling. , 2010, Microbes and infection.

[22]  R. Lamb,et al.  Autophagy, apoptosis, and the influenza virus M2 protein. , 2009, Cell host & microbe.

[23]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[24]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[25]  Gira Bhabha,et al.  Antibody Recognition of a Highly Conserved Influenza Virus Epitope , 2009, Science.

[26]  Jesse D. Bloom,et al.  Inferring Stabilizing Mutations from Protein Phylogenies: Application to Influenza Hemagglutinin , 2009, PLoS Comput. Biol..

[27]  Boguslaw Stec,et al.  Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses , 2009, Nature Structural &Molecular Biology.

[28]  Tokiko Watanabe,et al.  Mutational Analysis of Conserved Amino Acids in the Influenza A Virus Nucleoprotein , 2009, Journal of Virology.

[29]  A. García-Sastre,et al.  Attenuated influenza virus vaccines with modified NS1 proteins. , 2009, Current topics in microbiology and immunology.

[30]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[31]  Y. Guan,et al.  Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells , 2008, PloS one.

[32]  R. Sun,et al.  High-Resolution Functional Profiling of Hepatitis C Virus Genome , 2008, PLoS pathogens.

[33]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[34]  J. Taubenberger,et al.  Pandemic and seasonal influenza: therapeutic challenges. , 2008, Drug discovery today.

[35]  Raheleh Hatami,et al.  Specific Residues of the Influenza A Virus Hemagglutinin Viral RNA Are Important for Efficient Packaging into Budding Virions , 2007, Journal of Virology.

[36]  Joost Schymkowitz,et al.  The stability effects of protein mutations appear to be universally distributed. , 2007, Journal of molecular biology.

[37]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[38]  R. Lamb,et al.  Controlling influenza virus replication by inhibiting its proton channel. , 2007, Molecular bioSystems.

[39]  Lior Pachter,et al.  Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial Communities , 2005, PLoS Comput. Biol..

[40]  Dmitrij Frishman,et al.  STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins , 2004, Nucleic Acids Res..

[41]  Juno Choe,et al.  Protein tolerance to random amino acid change. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Tudor I. Oprea,et al.  Pursuing the leadlikeness concept in pharmaceutical research. , 2004, Current opinion in chemical biology.

[43]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[44]  Tokiko Watanabe,et al.  Generation of influenza A viruses entirely from cloned cDNAs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jérôme Euzenat,et al.  Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database , 1999, Nucleic Acids Res..

[46]  C. Pace,et al.  A helix propensity scale based on experimental studies of peptides and proteins. , 1998, Biophysical journal.

[47]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[48]  W G Laver,et al.  A sialic acid-derived phosphonate analog inhibits different strains of influenza virus neuraminidase with different efficiencies. , 1995, Journal of molecular biology.

[49]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[50]  R. Kauffman Therapeutic Challenges , 1990, Drug safety.

[51]  D. Nayak,et al.  Identification of the defects in the hemagglutinin gene of two temperature-sensitive mutants of A/WSN/33 influenza virus. , 1986, Virology.