Numerical simulations of the quantized vortices on a thin superconducting hollow sphere

In this paper, we investigate the vortex nucleation on a thin superconducting hollow sphere. The problem is studied using a simplified system of Ginzburg-Landau equations. We present numerical algorithms which preserve the discrete gauge invariance for both time dependent and time independent simulations. The spatial discretization is based on a spherical centroidal Voronoi tessellation which offers a very effective high resolution mesh on the sphere for the order parameter as well as other physically interesting variables such as the super-current and the induced magnetic field. Various vortex configurations and energy diagrams are computed. Dynamic responses of the vortices to the applied current are also simulated.

[1]  F. M. Peeters,et al.  Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks and rings , 2001 .

[2]  Saps Buchman,et al.  Magnetic flux distribution on a spherical superconducting shell , 1994 .

[3]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[4]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[5]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[6]  T. Rivière Ginzburg-Landau vortices : the static model , 2000 .

[7]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[8]  C. V. Haesendonck,et al.  Effect of sample topology on the critical fields of mesoscopic superconductors , 1995, Nature.

[9]  J. T. Devreese,et al.  Superconducting mesoscopic square loop , 1998 .

[10]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[11]  Mark W. Coffey London model for the levitation force between a horizontally oriented point magnetic dipole and superconducting sphere , 2002 .

[12]  Qiang Du,et al.  A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions , 1995, European Journal of Applied Mathematics.

[13]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[14]  B Cipra,et al.  Music of the Spheres , 2021, Women's Studies.

[15]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[16]  M. A. Moore,et al.  Vortices in a thin-film superconductor with a spherical geometry , 1997 .

[17]  Russell J. Donnelly,et al.  Quantized Vortices in Helium II , 1991 .

[18]  Qiang Du,et al.  Analysis and Convergence of a Covolume Approximation of the Ginzburg--Landau Model of Superconductivity , 1998 .

[19]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[20]  Qiang Du,et al.  Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity , 1998, Math. Comput..

[21]  F. M. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .

[22]  Qiang Du,et al.  The bifurcation diagrams for the Ginzburg–Landau system of superconductivity , 2001 .

[23]  F. M. Peeters,et al.  Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2002 .

[24]  Qiang Du,et al.  Critical Magnetic Field and Asymptotic Behavior of Superconducting Thin Films , 2002, SIAM J. Math. Anal..

[25]  Qiang Du,et al.  Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations , 2004, Math. Comput..

[26]  Qiang Du,et al.  Finite Volume Methods on Spheres and Spherical Centroidal Voronoi Meshes , 2005, SIAM J. Numer. Anal..

[27]  J. Rubinstein,et al.  PHASE TRANSITION CURVES FOR MESOSCOPIC SUPERCONDUCTING SAMPLES , 1999 .

[28]  Q. Du Diverse Vortex Dynamics in Superfluids , 2022 .

[29]  M. Gunzburger,et al.  Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .

[30]  Zhiming Chen,et al.  Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..

[31]  Zhi-Xiong Cai,et al.  Angle dependence of magnetization in a single-domain YBa{sub 2}Cu{sub 3}O{sub x} sphere , 1998 .

[32]  Peterson,et al.  Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.

[33]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[34]  B. Iannotta MUSIC OF THE SPHERES , 1996 .

[35]  S. Jonathan Chapman,et al.  The Motion of Superconducting Vortices in Thin Films of Varying Thickness , 1998, SIAM J. Appl. Math..

[36]  Philip W. Anderson,et al.  Formation of High Temperature Superconducting Balls , 1999 .

[37]  M. A. Moore,et al.  Noninteger flux quanta for a spherical superconductor , 1998 .

[38]  Qiang Du,et al.  A model for variable thickness superconducting thin films , 1996 .

[39]  Qiang Du,et al.  High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model , 1996, SIAM J. Appl. Math..