Karhunen–Loève decomposition of random fields based on a hierarchical matrix approach

SUMMARY The simulation of the behavior of structures with uncertain properties is a challenging issue, because it requires suitable probabilistic models and adequate numerical tools. Nowadays, it is possible to perform probabilistic investigations of the structural performance, which take into account a space-variant uncertainty characterization of the structures. Given a structural solver and the probabilistic models, the reliability analysis of the structural response depends on the continuous random fields approximation, which is carried out by means of a finite set of random variables. The paper analyzes the main aspects of discretization in the case of 2D problems. The combination of the well-known Karhunen–Loeve series expansion, the finite element method and the hierarchical matrices approach is proposed in the paper. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Masanobu Shinozuka,et al.  Weighted Integral Method. II: Response Variability and Reliability , 1991 .

[2]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[3]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[4]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[5]  Y. Tamura,et al.  PROPER ORTHOGONAL DECOMPOSITION OF RANDOM WIND PRESSURE FIELD , 1999 .

[6]  S. Mahadevan,et al.  Collocation-based stochastic finite element analysis for random field problems , 2007 .

[7]  S. Rahman A polynomial dimensional decomposition for stochastic computing , 2008 .

[8]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[9]  Marcin Kamiński,et al.  On generalized stochastic perturbation‐based finite element method , 2005 .

[10]  Ken J. Craig,et al.  On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen–Loève expansions , 2008 .

[11]  Kok-Kwang Phoon,et al.  Simulation of second-order processes using Karhunen–Loeve expansion , 2002 .

[12]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[13]  Michael S. Eldred,et al.  Reliability-Based Design Optimization Using Efficient Global Reliability Analysis , 2009 .

[14]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[15]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[16]  Benjamin Richard,et al.  A response surface method based on support vector machines trained with an adaptive experimental design , 2012 .

[17]  Bruce R. Ellingwood,et al.  Orthogonal Series Expansions of Random Fields in Reliability Analysis , 1994 .

[18]  B. Sudret,et al.  Reliability-based design optimization using kriging surrogates and subset simulation , 2011, 1104.3667.

[19]  M. Grigoriu Crossings of non-gaussian translation processes , 1984 .

[20]  Jorge E. Hurtado,et al.  An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory , 2004 .

[21]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[22]  George Deodatis,et al.  Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .

[23]  Andy J. Keane,et al.  On using deterministic FEA software to solve problems in stochastic structural mechanics , 2007 .

[24]  Maurice Lemaire,et al.  Assessing small failure probabilities by combined subset simulation and Support Vector Machines , 2011 .

[25]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[26]  Mircea Grigoriu,et al.  Evaluation of Karhunen–Loève, Spectral, and Sampling Representations for Stochastic Processes , 2006 .

[27]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[28]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[29]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[30]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[31]  S. Rahman,et al.  A Meshless Method for Computational Stochastic Mechanics , 2005 .

[32]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[33]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[34]  Sharif Rahman Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions , 2009 .

[35]  Sharif Rahman,et al.  ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS , 2011 .

[36]  George Stefanou,et al.  Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields , 2007 .

[37]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[38]  K. Phoon,et al.  Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes , 2007 .

[39]  David R. Owen,et al.  A Fourier–Karhunen–Loève discretization scheme for stationary random material properties in SFEM , 2008 .

[40]  Pei-Ling Liu,et al.  SELECTION OF RANDOM FIELD MESH IN FINITE ELEMENT RELIABILITY ANALYSIS , 1993 .

[41]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[42]  G. Schuëller,et al.  Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections , 2007 .

[43]  A.C.W.M. Vrouwenvelder Developments towards full probabilistic design codes , 2002 .

[44]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[45]  Thomas Most,et al.  A comparison of approximate response functions in structural reliability analysis , 2008 .

[46]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[47]  Vincenzo Ilario Carbone,et al.  Discretization of 2D random fields : A genetic algorithm approach , 2009 .

[48]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[49]  M. Shinozuka,et al.  Random fields and stochastic finite elements , 1986 .

[50]  G. Schuëller,et al.  Uncertainty analysis of complex structural systems , 2009 .

[51]  Sharif Rahman,et al.  A perturbation method for stochastic meshless analysis in elastostatics , 2001 .

[52]  Masanobu Shinozuka,et al.  PROBABILISTIC MODELING OF CONCRETE STRUCTURES , 1972 .

[53]  Stefan Vandewalle,et al.  Fourier mode analysis of multigrid methods for partial differential equations with random coefficients , 2007, J. Comput. Phys..

[54]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[55]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[56]  Dimos C. Charmpis,et al.  The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science , 2007 .

[57]  A. Zerva,et al.  Spatial variation of seismic ground motions: An overview , 2002 .

[58]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[59]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[60]  Vincenzo Ilario Carbone,et al.  Numerical discretization of stationary random processes , 2010 .

[61]  Ramana V. Grandhi,et al.  Structural reliability under non-Gaussian stochastic behavior , 2004 .