A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints

Estimating parameters of a model system using observed chaotic scalar time series data is a topic of active interest. To estimate these parameters requires a suitable similarity indicator between the observed and model systems. Many works have considered a similarity measure in the time domain, which has limitations because of sensitive dependence on initial conditions. On the other hand, there are features of chaotic systems that are not sensitive to initial conditions such as the topology of the strange attractor. We have used this feature to propose a new cost function for parameter estimation of chaotic models, and we show its efficacy for several simple chaotic systems.

[1]  Ling Wang,et al.  An effective hybrid PSOSA strategy for optimization and its application to parameter estimation , 2006, Appl. Math. Comput..

[2]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[3]  Shahriar Gharibzadeh,et al.  Some remarks on chaotic systems , 2012, Int. J. Gen. Syst..

[4]  Junan Lu,et al.  A Simple Yet Complex One-parameter Family of Generalized Lorenz-like Systems , 2011, Int. J. Bifurc. Chaos.

[5]  G. Leonov,et al.  Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems , 2012 .

[6]  Yin Ming-hao,et al.  Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method , 2012 .

[7]  Min Han,et al.  Noise reduction method for chaotic signals based on dual-wavelet and spatial correlation , 2009, Expert Syst. Appl..

[8]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[9]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[10]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[11]  Ye Xu,et al.  An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems , 2011, Expert Syst. Appl..

[12]  Linsay,et al.  Quasiperiodicity and chaos in a system with three competing frequencies. , 1988, Physical review letters.

[13]  A. Wolf,et al.  Diagnosing chaos in the space circle , 1991 .

[14]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[15]  Jack J Jiang,et al.  Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Nikolay V. Kuznetsov,et al.  Drilling Systems: Stability and Hidden Oscillations , 2014 .

[17]  Henry D. I. Abarbanel,et al.  Prediction and system identification in chaotic nonlinear systems: Time series with broadband spectra , 1989 .

[18]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[19]  Julien Clinton Sprott,et al.  Extraction of dynamical equations from chaotic data , 1992 .

[20]  Leonie Kohl,et al.  Chaotic Vibrations An Introduction For Applied Scientists And Engineers , 2016 .

[21]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[22]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[23]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[24]  Sajad Jafari,et al.  Comment on "Parameter identification and synchronization of fractional-order chaotic systems" [Commun Nonlinear Sci Numer Simulat 2012;17: 305-16] , 2013, Commun. Nonlinear Sci. Numer. Simul..

[25]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[26]  Sajad Jafari,et al.  A novel noise reduction method based on geometrical properties of continuous chaotic signals , 2012, Sci. Iran..

[27]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[28]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[29]  Ye Xu,et al.  Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..

[30]  罗斌,et al.  Parameter estimation for chaotic systems with and without noise using differential evolution-based method , 2011 .

[31]  F. Ohle,et al.  Adaptive control of chaotic systems , 1990 .

[32]  Wei-Der Chang,et al.  Parameter identification of Chen and Lü systems: A differential evolution approach , 2007 .

[33]  Julien Clinton Sprott,et al.  Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.

[34]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits , 2013 .

[35]  Rahul Konnur,et al.  Estimation of all model parameters of chaotic systems from discrete scalar time series measurements , 2005 .

[36]  Ling Wang,et al.  An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems , 2010, Expert Syst. Appl..

[37]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons & Fractals.

[38]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[39]  Santo Banerjee,et al.  Global optimization of an optical chaotic system by Chaotic Multi Swarm Particle Swarm Optimization , 2012, Expert Syst. Appl..

[40]  B R Hunt,et al.  Local low dimensionality of atmospheric dynamics. , 2001, Physical review letters.

[41]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[42]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[43]  Romulus Breban,et al.  On the creation of Wada basins in interval maps through fixed point tangent bifurcation , 2005 .

[44]  Joaquín Míguez,et al.  An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems , 2006 .

[45]  Leandro dos Santos Coelho,et al.  A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization , 2010, Expert Syst. Appl..

[46]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[47]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[48]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[49]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[50]  H. Abarbanel,et al.  Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[51]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[52]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[53]  Jun-Juh Yan,et al.  Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..

[54]  L. A. Aguirre,et al.  Validating Identified Nonlinear Models with Chaotic Dynamics , 1994 .

[55]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[56]  Changchun Hua,et al.  Parameter identification of commensurate fractional-order chaotic system via differential evolution , 2012 .

[57]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[58]  Y. F. Gong,et al.  Recovering strange attractors from noisy interspike intervals of neuronal firings , 1999 .

[59]  Hirosato Nomura,et al.  Parameters identification of chaotic systems by quantum-behaved particle swarm optimization , 2009, Int. J. Comput. Math..

[60]  Qigui Yang,et al.  Dynamical analysis of the generalized Sprott C system with only two stable equilibria , 2012 .

[61]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[62]  B. Huberman,et al.  Chaotic states and routes to chaos in the forced pendulum , 1982 .

[63]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[64]  J. A. Tenreiro Machado,et al.  Discontinuity and complexity in nonlinear physical systems , 2014 .

[65]  H. Kantz,et al.  Optimizing of recurrence plots for noise reduction. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Jun Sun,et al.  Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method , 2010 .

[68]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[69]  B. Wigdorowitz,et al.  Modelling concepts arising from an investigation into a chaotic system , 1991 .

[70]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[71]  Nikolay V. Kuznetsov,et al.  Hidden Attractor in Chua's Circuits , 2011, ICINCO.

[72]  Yinggan Tang,et al.  Parameter estimation for time-delay chaotic system by particle swarm optimization , 2009 .

[73]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[74]  Qigui Yang,et al.  Parameter identification and synchronization of fractional-order chaotic systems , 2012 .

[75]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[76]  Stephen A. Billings,et al.  Global analysis and model validation in nonlinear system identification , 1994, Nonlinear Dynamics.

[77]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[78]  Tzuu-Hseng S. Li,et al.  Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems , 2012, Comput. Math. Appl..

[79]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[80]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[81]  Nikolay V. Kuznetsov,et al.  Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems , 2011 .

[82]  Sergio Cerutti,et al.  Nonlinear noise reduction for the analysis of heart rate variability signals in normal and heart transplanted subjects , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).