B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main

We present 850 μm polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope as part of the B-fields In STar-forming Region Observations survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less-dense filamentary structures where NH2<0.93×1022 cm−2 (magnetic fields perpendicular to density gradients), while they are perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at NH2≈4.6×1022 cm−2. This can be interpreted as a signature of core formation. At NH2≈16×1022 cm−2, magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments (B POS = 60–300 μG)) using the Davis–Chandrasekhar–Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities.

Lei Zhu | P. Koch | A. Whitworth | N. Peretto | G. Fuller | H. Chen | T. Onaka | Sang-Sung Lee | D. Byun | C. Hull | D. Johnstone | P. Bastien | S. Viti | Jongsoo Kim | G. Savini | J. Francesco | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | W. Chen | K. Kawabata | S. Eyres | S. Falle | J. Greaves | D. Ward-Thompson | L. Fissel | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | K. Lacaille | C. Dowell | J. Rawlings | A. Kataoka | M. Rawlings | H. Parsons | L. Qian | K. Qiu | Y. Duan | Jinghua Yuan | D. Eden | A. Rigby | Jianjun Zhou | Xindi Tang | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Zhiwei Chen | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Jungyeon Cho | H. Yoo | D. Berry | T. Pyo | M. Griffin | F. Nakamura | S. Loo | D. Arzoumanian | M. Tahani | R. Rao | Xing Lu | Y. Doi | J. Robitaille | Chuan-Peng Zhang | Guoyin Zhang | Hua-b. Li | Sheng-Yuan Liu | T. Bourke | S. Lai | F. Kirchschlager | F. Priestley | I. D. Looze | A. Soam | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | Shinyoung Kim | K. Pattle | W. Kwon | E. Chung | H. Duan | P. Diep | S. Hayashi | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Y. Shimajiri | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | S. Coudé | T. Gledhill | Mi-Ryang Kim | R. Furuya | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | Mike Chen | I. Han | T. Hoang | L. Tram | Hyeseung Lee | Motohide Tamura | C. Law | Junhao 峻豪 Liu 刘 | V. Könyves | Hyeong-Sik Yun | T. Zenko | Masato I. N. Kobayashi | S. Dai | E. Franzmann | Hong-Li Liu | Q. Gu | H. Saito | J. Hwang | T. Kusune | Yong-Hee Lee | N. B. Ngoc | V. J. M. Le Gouellec | Chang Won 창원 Lee 이 | Tetsuo 川哲夫 Hasegawa 長谷 | Tao-Chung 道沖 Ching 慶 | Yunhee Choi | J. Karoly | Sheng-Jun 聖鈞 Lin 林 | T. Liu 刘 | Masafumi 雅文 Matsumura 松村 | G. Moriarty-Schieven | Jia-Wei Wang | Jin-An Wu | Jinjin 津津 Xie 謝 | Philippe André | Matt Griffin | T. Inoue | S. Lai | Hongli Liu | N. Ngoc | J. Liu 刘 | Chuan-peng Zhang | S. Lin 林 | W. Chen | H. Yun | Ya-wen Tang | Guo-Yin Zhang | S. Lin 林 | Ramprasad Rao | Takayoshi Kusune | Geumsook Park | Xing Lu

[1]  P. Koch,et al.  The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333 , 2021, The Astrophysical Journal Letters.

[2]  Lei Zhu,et al.  The JCMT BISTRO Survey: An 850/450 μm Polarization Study of NGC 2071IR in Orion B , 2021, The Astrophysical Journal.

[3]  P. Koch,et al.  The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud , 2021, The Astrophysical Journal.

[4]  P. Koch,et al.  The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region , 2021, The Astrophysical Journal.

[5]  Lei Zhu,et al.  The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry , 2021, The Astrophysical Journal Letters.

[6]  Lei Zhu,et al.  Observations of Magnetic Fields Surrounding LkHα 101 Taken by the BISTRO Survey with JCMT-POL-2 , 2021 .

[7]  C. W. Lee,et al.  Dust polarized emission observations of NGC 6334 , 2020, 2012.13060.

[8]  M. Tamura,et al.  JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud , 2020, 2011.09765.

[9]  P. Koch,et al.  The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps , 2020, The Astrophysical Journal.

[10]  P. Koch,et al.  Formation of the Hub–Filament System G33.92+0.11: Local Interplay between Gravity, Velocity, and Magnetic Field , 2020, The Astrophysical Journal.

[11]  P. Diep,et al.  Grain Alignment and Disruption by Radiative Torques in Dense Molecular Clouds and Implication for Polarization Holes , 2020, 2010.07742.

[12]  M. Tamura,et al.  OMC-1 dust polarization in ALMA Band 7: diagnosing grain alignment mechanisms in the vicinity of Orion Source I , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  P. Hennebelle,et al.  A statistical analysis of dust polarization properties in ALMA observations of Class 0 protostellar cores , 2020, Astronomy & Astrophysics.

[14]  S. Reissl,et al.  Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South , 2020, Nature Astronomy.

[15]  Lei Zhu,et al.  The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.

[16]  Marc W. Pound,et al.  Astronomical Data Analysis Software and Systems XXVIII. , 2019 .

[17]  P. Hennebelle,et al.  Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. III. Survey Overview , 2019, The Astrophysical Journal Supplement Series.

[18]  Zhi-Yun Li,et al.  Characterizing Magnetic Field Morphologies in Three Serpens Protostellar Cores with ALMA , 2019, The Astrophysical Journal.

[19]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[20]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.

[21]  G. Herczeg,et al.  An Initial Overview of the Extent and Structure of Recent Star Formation within the Serpens Molecular Cloud Using Gaia Data Release 2 , 2019, The Astrophysical Journal.

[22]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ρ Ophiuchus C , 2019, The Astrophysical Journal.

[23]  Shu-ichiro Inutsuka,et al.  The Role of Magnetic Field in Molecular Cloud Formation and Evolution , 2019, Front. Astron. Space Sci..

[24]  E. Pascale,et al.  JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146 , 2018, The Astrophysical Journal.

[25]  Zhi-Yun Li,et al.  Highly Ordered and Pinched Magnetic Fields in the Class 0 Protobinary System L1448 IRS 2 , 2018, The Astrophysical Journal.

[26]  T. Henning,et al.  Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. II. IRAS 16293-2422 , 2018, The Astrophysical Journal.

[27]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[28]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[29]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[30]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[31]  P. Hennebelle,et al.  Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission , 2018, 1803.00028.

[32]  Erin G. Cox,et al.  ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud , 2018, 1802.00449.

[33]  Zhi-Yun Li,et al.  ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks , 2018, 1801.03802.

[34]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[35]  Martin Houde,et al.  ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 , 2017, 1707.03827.

[36]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[37]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[38]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[39]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[40]  Y. Shirley The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers , 2015, 1501.01629.

[41]  M. Wright,et al.  TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.

[42]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[43]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[44]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[45]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[46]  P. Bastien,et al.  GRAIN ALIGNMENT IN STARLESS CORES , 2014, 1411.1031.

[47]  G. Fuller,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP: GBS: first look at Serpens , 2010, 1006.0891.

[48]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[49]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[50]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[51]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[52]  J. Kauffmann,et al.  Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.

[53]  G. Fazio,et al.  A Combined Spitzer and Chandra Survey of Young Stellar Objects in the Serpens Cloud Core , 2007, 0707.2537.

[54]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[55]  B. Merín,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS , 2007, 0704.0009.

[56]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[57]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[58]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[59]  T. Mouschovias Ambipolar diffusion in interstellar clouds : a new solution , 1979 .

[60]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .

[61]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .