暂无分享,去创建一个
Matthew J. Hirn | Ariel Herbert-Voss | Frederick McCollum | Ariel Herbert-Voss | M. Hirn | Frederick McCollum
[1] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[2] Some results of the Lipschitz constant of 1-Field on R n , 2014 .
[3] E. Gruyer. Minimal Lipschitz Extensions to Differentiable Functions Defined on a Hilbert Space , 2009 .
[4] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[5] Y. Peres,et al. Tug-of-war and the infinity Laplacian , 2006, math/0605002.
[6] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[7] Jean-Michel Morel,et al. An axiomatic approach to image interpolation , 1997, Proceedings of International Conference on Image Processing.
[8] Differentiable functions on Banach spaces with Lipschitz derivatives , 1973 .
[9] C. Fefferman,et al. Smooth Interpolation of Data by Efficient Algorithms , 2013 .
[10] J. Glass. Smooth-curve interpolation: A generalized spline-fit procedure , 1966 .
[11] Daniel A. Spielman,et al. Algorithms for Lipschitz Learning on Graphs , 2015, COLT.
[12] Timothy M. Chan,et al. Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three , 1995, SODA '95.
[13] Nancy M. Amato,et al. On computing Voronoi diagrams by divide-prune-and-conquer , 1996, SCG '96.
[14] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[15] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[16] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[17] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .
[18] Arie Israel,et al. Fitting a Sobolev function to data I , 2014, 1411.1786.
[19] Sup-Inf explicit formulas for minimal Lipschitz extensions for 1-fields on R^n , 2015 .
[20] Raimund Seidel,et al. Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..
[21] Kungl. Svenska vetenskapsakademien.. Arkiv för matematik , 1949 .
[22] M. D. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .
[23] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[24] C. Fefferman. Fitting a Cm-smooth function to data, III , 2009 .
[25] Some results of the Lipschitz constant of 1-Field on $\mathbb{R}^n$ , 2014, 1402.4276.
[26] Colin N. Jones,et al. Optimized decision trees for point location in polytopic data sets - application to explicit MPC , 2010, Proceedings of the 2010 American Control Conference.
[27] John C. Holladay,et al. A smoothest curve approximation , 1957 .
[28] Bo'az Klartag,et al. Fitting a $C^m$-Smooth Function to Data II , 2009 .
[29] G. Aronsson. Minimization problems for the functional supxF(x, f(x), f′(x)) , 1965 .
[30] 阿部 浩一,et al. Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .
[31] Eugène Rouché. Sur l'interpolation , 1859 .
[32] C. Morawetz. The Courant Institute of Mathematical Sciences , 1988 .
[33] Gunnar Aronsson,et al. Fast/Slow Diffusion and Growing Sandpiles , 1996 .
[34] D. Rose,et al. Generalized nested dissection , 1977 .
[35] G. Glaeser. Prolongement extr?mal de fonctions diff?rentiables d'une variable , 1973 .
[36] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[37] A general theorem of existence of quasi absolutely minimal Lipschitz extensions , 2012, 1211.5700.
[38] Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[39] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[40] Gunnar,et al. Minimization problems for the functional supxF(x, f(x), f'(x)). (II) , 1966 .
[41] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[42] Rex A. Dwyer,et al. On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.
[43] Alberto Bemporad,et al. Evaluation of piecewise affine control via binary search tree , 2003, Autom..
[44] Yann Gousseau,et al. Interpolation of digital elevation models using AMLE and related methods , 2002, IEEE Trans. Geosci. Remote. Sens..