A direct proof for lower semicontinuity of polyconvex functionals

Lower semicontinuity for polyconvex functionals of the form ∫Ωg(detDu)dx with respect to sequences of functions fromW1,n (Ω;ℝn) which converge inL1 (Ωℝn) and are uniformly bounded inW1,n−1 (Ω;ℝn), is proved. This was first established in [5] using results from [1] on Cartesian Currents. We give a simple direct proof which does not involve currents. We also show how the method extends to prove natural, essentially optimal, generalizations of these results.

[1]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[2]  E. Acerbi,et al.  New lower semicontinuity results for polyconvex integrals , 1994 .

[3]  I. Fonseca,et al.  Relaxation of multiple integrals in subcritical Sobolev spaces , 1997 .

[4]  Irene Fonseca,et al.  Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .

[5]  W. Ziemer Weakly differentiable functions , 1989 .

[6]  Paolo Marcellini On the definition and the lower semicontinuity of certain quasiconvex integrals , 1986 .

[7]  V. Sverák Regularity properties of deformations with finite energy , 1988 .

[8]  M. Giaquinta,et al.  Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity , 1989 .

[9]  J. Malý Lower semicontinuity of quasiconvex integrals , 1994 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[12]  C. Sbordone,et al.  Weak lower semicontinuity of polyconvex integrals: a borderline case , 1995 .

[13]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[14]  W. Gangbo On the weak lower semicontinuity of energies with polyconvex integrands , 1992 .

[15]  Paolo Marcellini,et al.  Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants , 1990 .

[16]  J. Malý Weak lower semicontinuity of polyconvex integrals , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Jiří Souček,et al.  Cartesian currents and variational problems for mappings into spheres , 1989 .