Codes from the incidence matrices of graphs on 3-sets

We examine the p-ary linear codes from incidence matrices of the three uniform subset graphs with vertex set the set of subsets of size 3 of a set of size n, with adjacency defined by two vertices as 3-sets being adjacent if they have zero, one or two elements in common, respectively. All the main parameters of the codes and the nature of the minimum words are obtained, and it is shown that the codes can be used for full error-correction by permutation decoding. We examine also the binary codes of the line graphs of these graphs.

[1]  Mohammed S. EL-Atrash,et al.  Linear Codes over Finite Fields , 2018, Designs from Linear Codes.

[2]  F. Wetenschappen FACULTEIT WETENSCHAPPEN , 1994 .

[3]  Washiela Fish,et al.  Codes from incidence matrices and line graphs of Hamming graphs , 2010, Discret. Math..

[4]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[5]  Jennifer D. Key,et al.  Information sets and partial permutation decoding for codes from finite geometries , 2006, Finite Fields Their Appl..

[6]  Michel Lavrauw,et al.  An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of PG(n, q) , 2009, J. Comb. Theory, Ser. A.

[7]  Jamshid Moori,et al.  Binary codes from graphs on triples , 2004, Discret. Math..

[8]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[9]  Ko-Wei Lih,et al.  Hamiltonian uniform subset graphs , 1987, J. Comb. Theory, Ser. B.

[10]  Daniel M. Gordon Minimal permutation sets for decoding the binary Golay codes , 1982, IEEE Trans. Inf. Theory.

[11]  Bernardo Gabriel Rodrigues,et al.  Codes from lattice and related graphs, and permutation decoding , 2010, Discret. Appl. Math..

[12]  Washiela Fish,et al.  Binary codes from the line graph of the n-cube , 2010, J. Symb. Comput..

[13]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[14]  Jamshid Moori,et al.  Codes associated with triangular graphs and permutation decoding , 2010, Int. J. Inf. Coding Theory.

[15]  E. Mwambene,et al.  Codes and designs from triangular graphs and their line graphs , 2011 .

[16]  Hans-Joachim Kroll,et al.  PD-sets for the codes related to some classical varieties , 2005, Discret. Math..

[17]  Washiela Fish,et al.  Codes from the incidence matrices and line graphs of Hamming graphs Hk(n, 2) for k ≥ 2 , 2011, Adv. Math. Commun..

[18]  Rita Procesi,et al.  Codes and groups , 2006 .

[19]  Jennifer D. Key,et al.  Partial permutation decoding for codes from finite planes , 2005, Eur. J. Comb..

[20]  J. Macwilliams Permutation decoding of systematic codes , 1964 .