Cycles through specified vertices of a graph

We prove that ifS is a set ofk−1 vertices in ak-connected graphG, then the cycles throughS generate the cycle space ofG. Moreover, whenk≧3, each cycle ofG can be expressed as the sum of an odd number of cycles throughS. On the other hand, ifS is a set ofk vertices, these conclusions do not necessarily hold, and we characterize the exceptional cases. As corollaries, we establish the existence of odd and even cycles through specified vertices and deduce the existence of long odd and even cycles in graphs of high connectivity.