One-Step Huber Estimates in the Linear Model

Abstract Simple “one-step” versions of Huber's (M) estimates for the linear model are introduced. Some relevant Monte Carlo results obtained in the Princeton project [1] are singled out and discussed. The large sample behavior of these procedures is examined under very mild regularity conditions.

[1]  L. L. Cam,et al.  On the Asymptotic Theory of Estimation and Testing Hypotheses , 1956 .

[2]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[3]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[4]  P. Sen,et al.  Theory of rank tests , 1969 .

[5]  A Special Group Structure and Equivariant Estimation , 1967 .

[6]  R. Pyke,et al.  Weak Convergence of a Two-sample Empirical Process and a New Approach to Chernoff-Savage Theorems , 1968 .

[7]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[8]  EFFICIENT LINEARIZED ESTIMATES BASED ON RANKS. , 1969 .

[9]  D. Relles Robust regression by modified least-squares , 1969 .

[10]  K. Alam Estimation of a Location Parameter , 1971 .

[11]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[12]  Charles H. Kraft,et al.  Asymptotic Efficiencies of Quick Methods of Computing Efficient Estimates Based on Ranks , 1972 .

[13]  C. Kraft,et al.  Linearized Rank Estimates and Signed-Rank Estimates for the General Linear Hypothesis , 1972 .

[14]  P. Bickel,et al.  On Some Analogues to Linear Combinations of Order Statistics in the Linear Model , 1973 .

[15]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[16]  V. Yohai Robust Estimation in the Linear Model , 1974 .

[17]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .