A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies

The members of the evolutionarily conserved Hox-gene complex, termed Hox genes, are required for specifying segmental identity during embryogenesis in various animal phyla. The Hox3 genes of winged insects have lost this ancestral function and are required for the development of extraembryonic epithelia, which do not contribute to any larval structure. Higher flies (Cyclorrhapha) such as Drosophila melanogaster contain Hox3 genes of two types, the zerknüllt type and the bicoid type. The zerknüllt gene is expressed zygotically on the dorsal side of the embryo and is required for establishing extraembryonic tissue. Its sister gene bicoid is expressed maternally and the transcripts are localized at the anterior pole of the mature egg. BICOID protein, which emerges from this localized source during early development, is required for embryonic patterning. All known direct bicoid homologues are confined to Cyclorrhaphan flies. Here, we describe Hox3 genes of the non-Cyclorrhaphan flies Empis livida (Empididae), Haematopota pluvialis (Tabanidae), and Clogmia albipunctata (Psychodidae). The gene sequences are more similar to zerknüllt homologues than to bicoid homologues, but they share expression characteristics of both genes. We propose that an ancestral Hox3 gene had been duplicated in the stem lineage of Cyclorrhaphan flies. During evolution, one of the gene copies lost maternal expression and evolved as zerknüllt, whereas the second copy lost zygotic expression and evolved as bicoid. Our finding correlates well with a partial reduction of zerknüllt-dependent extraembryonic tissue during Dipteran evolution.

[1]  R. Frutos,et al.  Molecular characterization of the zerknüllt region of the Antennapedia complex of D. subobscura , 1995, Chromosoma.

[2]  K. Sander,et al.  Expression of engrailed in embryos of a beetle and five dipteran species with special reference to the terminal regions , 1994, Roux's archives of developmental biology.

[3]  S. Lall,et al.  Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. , 2001, Development.

[4]  A. McGregor,et al.  Divergent structure and function of the bicoid gene in Muscoidea fly species , 2001, Evolution & development.

[5]  C. Rushlow,et al.  Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. , 2001, Genes & development.

[6]  R. Denell,et al.  A strategy for mapping bicoid on the phylogenetic tree , 2001, Current Biology.

[7]  T. Kaufman,et al.  Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae) , 2000, Evolution & development.

[8]  Chen Zhao,et al.  Reprogrammable Recognition Codes in Bicoid Homeodomain-DNA Interaction , 2000, Molecular and Cellular Biology.

[9]  C. Smibert,et al.  Mechanisms of RNA localization and translational regulation. , 2000, Current opinion in genetics & development.

[10]  H. Taubert,et al.  Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Akam,et al.  Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria , 2000, Evolution & development.

[12]  U. Schmidt-Ott The amnioserosa is an apomorphic character of cyclorrhaphan flies , 2000, Development Genes and Evolution.

[13]  W. Fitch Homology a personal view on some of the problems. , 2000, Trends in genetics : TIG.

[14]  W. Driever,et al.  Homeodomain position 54 specifies transcriptional versus translational control by Bicoid. , 2000, Molecular cell.

[15]  P. Holland The future of evolutionary developmental biology , 1999, Nature.

[16]  H. Jäckle,et al.  Sequence interval within the PEST motif of Bicoid is important for translational repression of caudal mRNA in the anterior region of the Drosophila embryo , 1999, The EMBO journal.

[17]  H. Jäckle,et al.  The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Diethard Tautz,et al.  Segmentation gene expression in the mothmidge Clogmia albipunctata (Diptera, Psychodidae) and other primitive dipterans , 1999, Development Genes and Evolution.

[19]  D. Grimaldi,et al.  Brachyceran Diptera in Cretaceous ambers and Mesozoic diversification of the Eremoneura. , 1999 .

[20]  D. Yeates,et al.  Congruence and controversy: toward a higher-level phylogeny of Diptera. , 1999, Annual review of entomology.

[21]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[22]  E. Lewis The bithorax complex: the first fifty years. , 1998, The International journal of developmental biology.

[23]  N. Proudfoot 20 years of making messenger RNA. , 1997, Trends in genetics : TIG.

[24]  Prof. Dr. José A. Campos-Ortega,et al.  The Embryonic Development of Drosophila melanogaster , 1997, Springer Berlin Heidelberg.

[25]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[26]  G. Struhl,et al.  Sequence-specific RNA binding by Bicoid , 1997, Nature.

[27]  Susan J. Brown,et al.  Class 3 Hox genes in insects and the origin of zen. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Dierk Niessing,et al.  RNA binding and translational suppression by bicoid , 1996, Nature.

[29]  J. Dubnau,et al.  RNA recognition and translational regulation by a homeodomain protein , 1996, Nature.

[30]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[31]  A. Vincent,et al.  Direct control of transcription of the Drosophila morphogen bicoid by the serendipity delta zinc finger protein, as revealed by in vivo analysis of a finger swap. , 1994, Genes & development.

[32]  L. Goldstein,et al.  Drosophila Melanogaster: Practical Uses in Cell and Molecular Biology , 1994 .

[33]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[34]  F. Falciani,et al.  Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. , 1994, Development.

[35]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[36]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[37]  R. Sommer,et al.  Segmentation gene expression in the housefly Musca domestica. , 1991, Development.

[38]  C. Nüsslein-Volhard,et al.  The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. , 1991, Development.

[39]  H. Jäckle,et al.  Gene expression mediated by cis‐acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback. , 1991, The EMBO journal.

[40]  C. Nüsslein-Volhard,et al.  Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. , 1990, Development.

[41]  G. Olsen,et al.  Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. , 1990, Advances in genetics.

[42]  M. Levine,et al.  Role of the zerknüllt gene in dorsal-ventral pattern formation in Drosophila. , 1990, Advances in genetics.

[43]  Pierre Gönczy,et al.  A single amino acid can determine the DNA binding specificity of homeodomain proteins , 1989, Cell.

[44]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[45]  G. Struhl,et al.  Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos , 1989, Nature.

[46]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[47]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[48]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[49]  D Bopp,et al.  The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. , 1988, The EMBO journal.

[50]  M. Levine,et al.  Molecular characterization of the zerknüllt region of the Antennapedia gene complex in Drosophila. , 1987, Genes & development.

[51]  M. Frasch,et al.  Maternal regulation of zerknüllt: a homoeobox gene controlling differentiation of dorsal tissues in Drosophila , 1987, Nature.

[52]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[53]  K. Sander Experimental egg activation in lower dipterans (Psychoda, Smittia) by low osmolality , 1985 .

[54]  F. Turner,et al.  Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. , 1984, Developmental biology.

[55]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[56]  D. J. Merrell,et al.  IN DROSOPHILA MELANOGASTER , 1983 .

[57]  J. McAlpine Manual of Nearctic Diptera , 1981 .

[58]  D. Anderson The Comparative Embryology of the Diptera , 1966 .

[59]  D. Poulson,et al.  The embryonic development of drosophila melanogaster , 1937 .

[60]  J. C. Li,et al.  Development in DROSOPHILA MELANOGASTER. , 1927, Genetics.