Groundwater System Modeling for Simultaneous Identification of Pollution Sources and Parameters with Uncertainty Characterization

Contamination of groundwater poses serious threat to the human health and environment. It is difficult and expensive to clean up contaminated aquifers. Identification of unknown pollution sources is vital for adopting any remediation strategy. Groundwater flow and transport simulation model is used to generate necessary data for Artificial Neural Networks (ANN) model building processes. Breakthrough curves obtained for specified pollution scenario are characterized to reduce the inputs to ANN model. The characterized breakthrough curves parameters serve as inputs to ANN model. Unknown pollution source characteristics, flow parameters and transport parameters are outputs for ANN model. Identification of sources is performed with considerations of three cases—simultaneous estimation of unknown sources and flow parameter; simultaneous estimation of unknown sources, flow and transport parameters; and simultaneous estimation of unknown sources and boundary head. Characterization of uncertainty in source identification due to uncertainty in flow parameter, uncertainty in transport parameter and uncertainty in constant head boundary estimation is performed using fuzzy vertex alpha-cut techniques.

[1]  A. K. Rastogi,et al.  Artificial Neural Network Application on Estimation of Aquifer Transmissivity , 2009 .

[2]  Luis A. Garcia,et al.  Using neural networks for parameter estimation in ground water , 2006 .

[3]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[4]  Ashu Jain,et al.  Identification of Unknown Groundwater Pollution Sources Using Artificial Neural Networks , 2004 .

[5]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[6]  Manish Jha,et al.  Linked Simulation-Optimization based Dedicated Monitoring Network Design for Unknown Pollutant Source Identification using Dynamic Time Warping Distance , 2014, Water Resources Management.

[7]  J. Eheart,et al.  Neural network-based screening for groundwater reclamation under uncertainty , 1993 .

[8]  J. Bear Hydraulics of Groundwater , 1979 .

[9]  Khaled S. Balkhair Aquifer parameters determination for large diameter wells using neural network approach , 2002 .

[10]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[11]  Srinivasa Lingireddy,et al.  AQUIFER PARAMETER ESTIMATION USING GENETIC ALGORITHMS AND NEURAL NETWORKS , 1998 .

[12]  George F. Pinder,et al.  Application of the Digital Computer for Aquifer Evaluation , 1968 .

[13]  J. Bredehoeft,et al.  Computer model of two-dimensional solute transport and dispersion in ground water , 1978 .

[14]  Paolo Vicini,et al.  Simulating pharmacokinetic and pharmacodynamic fuzzy-parameterized models: a comparison of numerical methods , 2007, Journal of Pharmacokinetics and Pharmacodynamics.

[15]  L. L. Rogers,et al.  Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling , 1994 .

[16]  Mustafa M. Aral,et al.  Identification of Contaminant Source Location and Release History in Aquifers , 2001 .

[17]  M. Tamer Ayvaz,et al.  Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks , 2008 .

[18]  Enrico Zio,et al.  Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks , 1997 .

[19]  Richard C. Peralta,et al.  Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm , 1999 .

[20]  L. L. Rogers,et al.  Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. , 1995, Environmental science & technology.

[21]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[22]  George F. Pinder,et al.  Mass transport in flowing groundwater , 1973 .

[23]  Dan Rosbjerg,et al.  A Comparison of Four Inverse Approaches to Groundwater Flow and Transport Parameter Identification , 1991 .

[24]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[25]  J. Kaluarachchi,et al.  Parameter estimation using artificial neural network and genetic algorithm for free‐product migration and recovery , 1998 .

[26]  Bithin Datta,et al.  Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data , 2007 .

[27]  Divya Srivastava,et al.  Breakthrough Curves Characterization and Identification of an Unknown Pollution Source in Groundwater System Using an Artificial Neural Network (ANN) , 2014 .

[28]  Luis A. Garcia,et al.  Parameter Estimation in Groundwater Hydrology using Artificial Neural Networks , 2003 .

[29]  Kaufui Wong,et al.  A Neural‐Network Approach to the Determination of Aquifer Parameters , 1992 .