Approach to equilibrium for locally expanding maps in ℝk

By using a well known technique from classical statistical mechanics of one-dimensional lattice spin systems we prove existence of an absolutely continuous invariant asymptotic measure for certain locally expanding mapsT of the unit cube in ℝk. We generalize herewith in a certain sense the results of Lasota and Yorke on piecewise expanding maps of the unit interval to higher dimensions. We show a Kuzmin-type theorem for these systems from which exponential approach to equilibrium and strong mixing properties follow.

[1]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[2]  D. Mayer On a $\zeta $ function related to the continued fraction transformation , 1976 .

[3]  W. Parry On theβ-expansions of real numbers , 1960 .

[4]  D. Ruelle,et al.  The Ergodic Theory of Axiom A Flows. , 1975 .

[5]  M. Waterman Some ergodic properties of multi-dimensional f-expansions , 1970 .

[6]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[7]  W. Szlenk,et al.  On invariant measures for expanding differentiable mappings , 1969 .

[8]  G. Roepstorff,et al.  Strange attractors and asymptotic measures of discrete-time dissipative systems , 1983 .

[9]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[10]  O. Perron,et al.  Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .

[11]  S. Smale Differentiable dynamical systems , 1967 .

[12]  Leon Bernstein,et al.  The Jacobi-Perron Algorithm: Its Theory and Application , 1971 .

[13]  Oliver Penrose,et al.  A nonequilibrium entropy for dynamical systems , 1981 .

[14]  D. Mayer,et al.  The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics , 1980 .

[15]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[16]  Michael S. Waterman,et al.  A Jacobi algorithm and metric theory for greatest common divisors , 1977 .

[17]  Selim Tuncel,et al.  On the classification of Markov chains by finite equivalence , 1981 .

[18]  F. Schweiger A modified Jacobi-Perron algorithm with explicitly given invariant measure , 1979 .

[19]  Michael Shub,et al.  Endomorphisms of compact differentiable manifolds , 1969 .

[20]  Gerhard Keller,et al.  On the rate of convergence to equilibrium in one-dimensional systems , 1984 .

[21]  D. Ruelle,et al.  The ergodic theory of AxiomA flows , 1975 .

[22]  D. Mayer The transfer-matrix of a one-sided subshift of finite type with exponential interaction , 1976 .

[23]  Franz Hofbauer,et al.  Ergodic properties of invariant measures for piecewise monotonic transformations , 1982 .

[24]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .