Scaling of GNSS Radio Occultation Impact with Observation Number Using an Ensemble of Data Assimilations

AbstractAn ensemble of data assimilations (EDA) approach is used to estimate how the impact of Global Navigation Satellite System (GNSS) radio occultation (RO) measurements scales as a function of observation number in the ECMWF numerical weather prediction system. The EDA provides an estimate of the theoretical analysis and short-range forecast error statistics, based on the ensemble “spread,” which is the standard deviation of the ensemble members about the ensemble mean. This study is based on computing how the ensemble spread of various parameters changes as a function of the number of simulated GNSS RO observations. The impact from 2000 up to 128 000 globally distributed simulated GNSS RO profiles per day is investigated. It is shown that 2000 simulated GNSS RO measurements have an impact similar to real measurements in the EDA and that the EDA-based impact of real data can be related to the impact in observing system experiments. The dependence of the ensemble statistics on observation error statist...

[1]  Massimo Bonavita,et al.  Estimating background‐error variances with the ECMWF Ensemble of Data Assimilations system: some effects of ensemble size and day‐to‐day variability , 2011 .

[2]  Christian Rocken,et al.  THE COSMIC/FORMOSAT-3 MISSION THE COSMIC/FORMOSAT-3 MISSION , 2008 .

[3]  B. Khattatov,et al.  Data assimilation : making sense of observations , 2010 .

[4]  Jean-Noël Thépaut,et al.  The Spatial Structure of Observation Errors in Atmospheric Motion Vectors from Geostationary Satellite Data , 2003 .

[5]  S. B. Healy,et al.  Refractivity coefficients used in the assimilation of GPS radio occultation measurements , 2011 .

[6]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[7]  Gérald Desroziers,et al.  Diagnostic and impact studies of a wavelet formulation of background‐error correlations in a global model , 2011 .

[8]  Louis Garand,et al.  Signature of the atmospheric compressibility factor in COSMIC, CHAMP, and GRACE radio occultation data , 2009 .

[9]  L. Raynaud,et al.  Objective filtering of ensemble‐based background‐error variances , 2009 .

[10]  Jean M. Rüeger,et al.  Refractive Index Formulae for Radio Waves , 2002 .

[11]  I. Moroz,et al.  Stochastic parametrizations and model uncertainty in the Lorenz ’96 system , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Peter Bauer,et al.  GNSS Radio Occultation Constellation Observing System Experiments , 2014 .

[13]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[14]  Godelieve Deblonde,et al.  Impact of the Assimilation of CHAMP Refractivity Profiles on Environment Canada Global Forecasts , 2008 .

[15]  Juha-Pekka Luntama,et al.  Prospects of the EPS GRAS Mission For Operational Atmospheric Applications , 2008 .

[16]  JAN HASELER,et al.  The new Ensemble of Data Assimilations , 2011 .

[17]  Grzegorz Michalak,et al.  First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite , 2010 .

[18]  R. J. List Smithsonian Meteorological Tables , 2018, Nature.

[19]  F. Agterberg Introduction to Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1979 .

[20]  Grzegorz Michalak,et al.  GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. , 2009 .

[21]  Lars Isaksen,et al.  Use of analysis ensembles in estimating flow-dependent background error variance , 2007 .

[22]  Mats Hamrud,et al.  Assimilating GPS radio occultation measurements with two‐dimensional bending angle observation operators , 2007 .

[23]  S. B. Healy,et al.  Forecast impact experiment with a constellation of GPS radio occultation receivers , 2008 .

[24]  Paul Poli,et al.  Preliminary assessment of the scalability of GPS radio occultations impact in numerical weather prediction , 2008 .

[25]  Frederic Vitart,et al.  An Ensemble Generation Method for Seasonal Forecasting with an Ocean-Atmosphere Coupled Model , 2005 .

[26]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[27]  F. Rabier,et al.  The potential of high‐density observations for numerical weather prediction: A study with simulated observations , 2003 .

[28]  J. R. Eyre,et al.  Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS , 1989 .

[29]  Stephen J. Lord,et al.  Observing System Simulation Experiments , 2010 .

[30]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[31]  Rolf König,et al.  Atmosphere sounding by GPS radio occultation: First results from CHAMP , 2001 .

[32]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[33]  Lars Isaksen,et al.  Observing‐system impact assessment using a data assimilation ensemble technique: application to the ADM–Aeolus wind profiling mission , 2007 .

[34]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[35]  J. R. Eyre,et al.  The information content of data from satellite sounding systems: A simulation study , 1990 .

[36]  S. Healy,et al.  The combined impact of future space‐based atmospheric sounding instruments on numerical weather‐prediction analysis fields: A simulation study , 2003 .

[37]  A. von Engeln,et al.  Validation of operational GRAS radio occultation data , 2009 .

[38]  Dick Dee,et al.  Adaptive bias correction for satellite data in a numerical weather prediction system , 2007 .

[39]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[40]  L. Cucurull Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting , 2010 .

[41]  Jean-Noël Thépaut,et al.  Assimilation experiments with CHAMP GPS radio occultation measurements , 2006 .

[42]  Matthew Fisher,et al.  On the equivalence between Kalman smoothing and weak‐constraint four‐dimensional variational data assimilation , 2005, Quarterly Journal of the Royal Meteorological Society.

[43]  Nedjeljka Žagar,et al.  Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short‐range forecast errors , 2005 .

[44]  M. Rennie,et al.  The impact of GPS radio occultation assimilation at the Met Office , 2010 .

[45]  Florence Rabier,et al.  Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances , 2002 .

[46]  Massimo Bonavita,et al.  On the use of EDA background error variances in the ECMWF 4D‐Var , 2012 .

[47]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .