Chapter 26 Coexistence of neuronal messengers and molecular selection

[1]  S Dehaene,et al.  Spin glass model of learning by selection. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Cartaud,et al.  Evidence for a polarity in the distribution of proteins from the cytoskeleton in Torpedo marmorata electrocytes , 1986, The Journal of cell biology.

[3]  H Korn,et al.  Probabilistic determination of synaptic strength. , 1986, Journal of neurophysiology.

[4]  J P Changeux,et al.  Increase of neurite-promoting activity for spinal neurons in muscles of 'paralysé' mice and tenotomised rats. , 1986, Brain research.

[5]  T. Hökfelt,et al.  Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. , 1985, European journal of pharmacology.

[6]  G. Owens,et al.  Brain "identifier sequence" is not restricted to brain: similar abundance in nuclear RNA of other organs. , 1985, Science.

[7]  J. Sanes,et al.  Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres , 1985, Nature.

[8]  H. Korn,et al.  Distribution of glycine receptors at central synapses: an immunoelectron microscopy study , 1985, The Journal of cell biology.

[9]  J. Sanes,et al.  Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Edelman,et al.  N-CAM at the vertebrate neuromuscular junction , 1985, The Journal of cell biology.

[11]  J. Changeux,et al.  Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. N. Unwin,et al.  Quaternary structure of the acetylcholine receptor , 1985, Nature.

[13]  P. M. Dunn,et al.  Lack of nicotinic supersensitivity in frog sympathetic neurones following denervation. , 1985, The Journal of physiology.

[14]  M. Mishina,et al.  Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle , 1985, Nature.

[15]  Leonard G. Davis,et al.  Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy , 1985, Nature.

[16]  H. Peng,et al.  Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells , 1985, The Journal of cell biology.

[17]  D. Faber,et al.  Evidence that receptors mediating central synaptic potentials extend beyond the postsynaptic density. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. K. Jerne,et al.  The generative grammar of the immune system. , 1985, Science.

[19]  W. Lipscomb,et al.  Structure at 2.9-A resolution of aspartate carbamoyltransferase complexed with the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. H. Seeburg,et al.  Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes , 1985, Nature.

[21]  R. Oswald,et al.  Demonstration and affinity labeling of a stereoselective binding site for a benzomorphan opiate on acetylcholine receptor-rich membranes from Torpedo electroplaque. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Finkel,et al.  Interaction of synaptic modification rules within populations of neurons. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[24]  M H Johnson,et al.  Programmed development in the mouse embryo. , 1984, Journal of embryology and experimental morphology.

[25]  F. Pfeiffer,et al.  Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Russell,et al.  The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA , 1984, Cell.

[27]  F. Crick Neurobiology: Memory and molecular turnover , 1984, Nature.

[28]  E. Neumann,et al.  Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Changeux,et al.  Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. , 1984, Physiological reviews.

[30]  S. Amara,et al.  Alternative RNA processing: determining neuronal phenotype. , 1984, Science.

[31]  C. Cotman,et al.  Cell biology of synaptic plasticity. , 1984, Science.

[32]  J. Sutcliffe,et al.  Control of neuronal gene expression. , 1984, Science.

[33]  J. Fawcett,et al.  Regressive events in neurogenesis. , 1984, Science.

[34]  M. Schramm,et al.  Message transmission: receptor controlled adenylate cyclase system. , 1984, Science.

[35]  J P Changeux,et al.  Acetylcholine receptor: an allosteric protein. , 1984, Science.

[36]  A. Haase,et al.  Simultaneous in situ detection of viral RNA and antigens. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Changeux,et al.  Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmorata. , 1984, Journal of molecular biology.

[38]  Donald D. Brown The role of stable complexes that repress and activate eucaryotic genes , 1984, Cell.

[39]  S. Snyder,et al.  Drug and neurotransmitter receptors in the brain. , 1984, Science.

[40]  S. Harrison,et al.  Cocrystals of the DNA-binding domain of phage 434 repressor and a synthetic phage 434 operator. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Mishina,et al.  Expression of functional acetylcholine receptor from cloned cDNAs , 1984, Nature.

[42]  E Neher,et al.  Substance P reduces acetylcholine‐induced currents in isolated bovine chromaffin cells. , 1984, The Journal of physiology.

[43]  J. Udgaonkar,et al.  Acetylcholine receptor: evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. , 1983, Biochemistry.

[44]  J. Changeux,et al.  Production and characterization of a monoclonal antibody directed against the 43,000-dalton v1 polypeptide from Torpedo marmorata electric organ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[45]  W. Freeman The physiological basis of mental images. , 1983, Biological psychiatry.

[46]  M. Bennett Development of neuromuscular synapses. , 1983, Physiological reviews.

[47]  J. Changeux,et al.  Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from torpedo marmorata. , 1983, Biochemistry.

[48]  P Siekevitz,et al.  Plasticity in the central nervous system: do synapses divide? , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. P. Hess,et al.  Acetylcholine receptor-controlled ion translocation: chemical kinetic investigations of the mechanism. , 1983, Annual review of biophysics and bioengineering.

[50]  U. Schibler,et al.  Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver , 1983, Cell.

[51]  D. J. Shapiro,et al.  Estrogen regulates the absolute rate of transcription of the Xenopus laevis vitellogenin genes. , 1983, The Journal of biological chemistry.

[52]  B. Samuelsson Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. , 1983, Science.

[53]  H. Weintraub,et al.  Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene , 1983, Cell.

[54]  J. Changeux,et al.  Denervation increases a neurite-promoting activity in extracts of skeletal muscle , 1983, Nature.

[55]  Takashi Miyata,et al.  Structural homology of Torpedo californica acetylcholine receptor subunits , 1983, Nature.

[56]  R. Oswald Effects of Calcium on the Binding of Phencyclidine to Acetylcholine Receptor‐Rich Membrane Fragments from Torpedo californica Electroplaque , 1983, Journal of neurochemistry.

[57]  T. Miyata,et al.  Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences , 1983, Nature.

[58]  Takashi Miyata,et al.  Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence , 1982, Nature.

[59]  H Korn,et al.  Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. , 1982, Journal of neurophysiology.

[60]  H. Thoenen,et al.  Purification of a new neurotrophic factor from mammalian brain. , 1982, The EMBO journal.

[61]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Changeux,et al.  Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ , 1981, The Journal of cell biology.

[63]  K L Magleby,et al.  A study of desensitization of acetylcholine receptors using nerve‐released transmitter in the frog , 1981, The Journal of physiology.

[64]  C. B. Weinberg,et al.  Metabolic stabilization of acetylcholine receptors at newly formed neuromuscular junctions in rat. , 1981, Developmental biology.

[65]  M. Groudine,et al.  α-globin-gene switching during the development of chicken embryos: Expression and chromosome structure , 1981, Cell.

[66]  M. Groudine,et al.  Activation of globin genes during chicken development , 1981, Cell.

[67]  C. Henderson,et al.  Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J P Changeux,et al.  Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution of an "intermediate" conformational transition and evidence for positive cooperative effects. , 1980, Biochemical and biophysical research communications.

[69]  H. Thoenen,et al.  Physiology of nerve growth factor. , 1980, Physiological reviews.

[70]  L. Olson,et al.  Nerve growth factors in the rat iris , 1980, Nature.

[71]  R R Neubig,et al.  Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. , 1980, Biochemistry.

[72]  L. Rubin,et al.  Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro , 1980, Nature.

[73]  J. Merlie,et al.  Biochemical properties of acteylcholine receptor subunits from Torpedo californica. , 1979, Biochemistry.

[74]  J. S. Barlow The mindful brain: B.M. Edelman and V.B. Mountcastle (MIT Press, Cambridge, Mass., 1978, 100 p., U.S. $ 10.00) , 1979 .

[75]  J. Changeux,et al.  Reconstitution of a functional acetylcholine regulator under defined conditions , 1979, FEBS letters.

[76]  J. Changeux,et al.  Regulation of muscle acetylcoline receptor synthesis in vitro by cyclic nucleotide derivatives , 1979, Nature.

[77]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[78]  M. Schramm Transfer of glucagon receptor from liver membranes to a foreign adenylate cyclase by a membrane fusion procedure. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Changeux,et al.  Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites. , 1979, European journal of biochemistry.

[80]  J P Changeux,et al.  Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. , 1979, European journal of biochemistry.

[81]  S Ochs,et al.  Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion. , 1978, Journal of neurobiology.

[82]  J. Changeux,et al.  Quantitative studies on the localization of the cholinergic receptor protein in the normal and denervated electroplaque from Electrophorus electricus , 1978, The Journal of cell biology.

[83]  A. Eldefrawi,et al.  Characterization of calcium-binding sites of the purified acetylcholine receptor and identification of the calcium-binding subunit. , 1978, Biochemistry.

[84]  J. Changeux,et al.  Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. , 1977, European journal of biochemistry.

[85]  Bernard Katz,et al.  Transmitter leakage from motor nerve endings , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[86]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[87]  J. Changeux,et al.  Synthesis of fluorescent acyl‐cholines with agonistic properties: pharmacological activity on Electrophorus electroplaque and interaction in vitro with Torpedo receptor‐rich membrane fragments , 1976, FEBS letters.

[88]  S. W. Kuffler,et al.  The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. , 1975, The Journal of physiology.

[89]  G M Tomkins,et al.  The metabolic code. , 1975, Science.

[90]  J. Changeux,et al.  Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata. , 1974, Molecular pharmacology.

[91]  J. Changeux,et al.  Consequences of denervation on the distribution of the cholinergic (nicotinic) receptor sites from Electrophorus electricus revealed by high resolution autoradiography. , 1973, Brain research.

[92]  J. Changeux,et al.  A theory of the epigenesis of neuronal networks by selective stabilization of synapses. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Changeux,et al.  Localization of the cholinergic receptor protein in Electrophorus electroplax by high resolution autoradiography , 1972, FEBS letters.

[95]  A. J. Harris,et al.  The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[96]  A Karlin,et al.  On the application of "a plausible model" of allosteric proteins to the receptor for acetylcholine. , 1967, Journal of theoretical biology.

[97]  J P Changeux,et al.  On the cooperativity of biological membranes. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Changeux,et al.  Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. , 1966, Molecular pharmacology.

[99]  D. Barker,et al.  Sprouting and degeneration of mammalian motor axons in normal and de-afferentated skeletal muscle , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[100]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[101]  C J CLEMEDSON,et al.  DYNAMIC RESPONSE OF CHEST WALL AND LUNG INJURIES IN RABBITS EXPOSED TO AIR SHOCK WAVES OF SHORT DURATION. , 1964, Acta physiologica Scandinavica. Supplementum.

[102]  J. Changeux,et al.  Allosteric proteins and cellular control systems. , 1963, Journal of molecular biology.

[103]  L. Tauc,et al.  A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system. , 1962, Journal of neurophysiology.

[104]  L. Tauc,et al.  Cholinergic Transmission Mechanisms for both Excitation and Inhibition in Molluscan Central Synapses , 1961, Nature.

[105]  B. Katz,et al.  A study of the ‘desensitization’ produced by acetylcholine at the motor end‐plate , 1957, The Journal of physiology.

[106]  M. Yaniv,et al.  Structure of transcriptionally active chromatin. , 1986, CRC critical reviews in biochemistry.

[107]  Jean-Pierre Changeux,et al.  Learning by Selection , 1984 .

[108]  M. Yaniv Regulation of eukaryotic gene expression by transactivating proteins and cis acting DNA elements , 1984, Biology of the cell.

[109]  M. Salpeter,et al.  Acetylcholine receptor at neuromuscular junctions by EM autoradiography using mask analysis and linear sources , 1984 .

[110]  M. Sokolovsky Muscarinic receptors in the central nervous system. , 1984, International review of neurobiology.

[111]  Henri Buc,et al.  Activation of Transcription by the Cyclic AMP Receptor Protein , 1984 .

[112]  J. Changeux,et al.  Stabilisation sélective de représentations neuronales par résonance entre «préreprésentations» spontanées du réseau cérébral et «percepts» évoqués par interaction avec le monde extérieur , 1984 .

[113]  J P Changeux,et al.  Concluding remarks: on the "singularity" of nerve cells and its ontogenesis. , 1983, Progress in brain research.

[114]  L. Swanson,et al.  Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis. , 1983, Cold Spring Harbor symposia on quantitative biology.

[115]  T. Hirose,et al.  Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor , 1983, Nature.

[116]  D. A. Brown,et al.  Acetylcholine and GABA receptors: subunits of central and peripheral receptors and their encoding nucleic acids. , 1983, Cold Spring Harbor symposia on quantitative biology.

[117]  M. Spira,et al.  Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions. , 1983, Cold Spring Harbor symposia on quantitative biology.

[118]  J. Sanes,et al.  The basal lamina of the neuromuscular junction. , 1983, Cold Spring Harbor symposia on quantitative biology.

[119]  J E Sulston,et al.  Neuronal cell lineages in the nematode Caenorhabditis elegans. , 1983, Cold Spring Harbor symposia on quantitative biology.

[120]  J. Changeux,et al.  Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata. , 1983, Cold Spring Harbor symposia on quantitative biology.

[121]  O. Steward Polyribosomes at the base of dendritic spines of central nervous system neurons--their possible role in synapse construction and modification. , 1983, Cold Spring Harbor symposia on quantitative biology.

[122]  W. Catterall,et al.  Structure and functional reconstitution of the voltage-sensitive sodium channel from rat brain. , 1983, Cold Spring Harbor symposia on quantitative biology.

[123]  J. Schwartz,et al.  Adaptive changes of neurotransmitter receptor mechanisms in the central nervous system. , 1983, Progress in brain research.

[124]  M. Poo,et al.  Development, maintenance, and modulation of patterned membrane topography: models based on the acetylcholine receptor. , 1982, Current topics in developmental biology.

[125]  J. Massoulie,et al.  The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. , 1982, Annual review of neuroscience.

[126]  J P Changeux,et al.  The Acetylcholine Receptor: An Allosteric Membrane Protein , 1982 .

[127]  P Chambon,et al.  Organization and expression of eucaryotic split genes coding for proteins. , 1981, Annual review of biochemistry.

[128]  W. Harris Neural activity and development. , 1981, Annual review of physiology.

[129]  W. Catterall Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. , 1980, Annual review of pharmacology and toxicology.

[130]  J. Patrick,et al.  Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[131]  R. Fletterick,et al.  The structures and related functions of phosphorylase a. , 1980, Annual review of biochemistry.

[132]  D M Fambrough,et al.  Control of acetylcholine receptors in skeletal muscle. , 1979, Physiological reviews.

[133]  D. Purves,et al.  Synaptic organization and acetylcholine sensitivity of multiply innervated autonomic ganglion cells. , 1976, Cold Spring Harbor symposia on quantitative biology.

[134]  J. Changeux,et al.  Effects of a snake alpha-neurotoxin on the development of innervated skeletal muscles in chick embryo. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[136]  J. Changeux Le cerveau et l'événement , 1972 .

[137]  V. Hamburger Embryonic Motility in Vertebrates , 1970 .

[138]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE NEURONS IN THE CENTRAL NERVOUS SYSTEM. IV. DISTRIBUTION OF MONOAMINE NERVE TERMINALS IN THE CENTRAL NERVOUS SYSTEM. , 1965, Acta physiologica Scandinavica. Supplementum.

[139]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[140]  B. Falck,et al.  Cellular localization of brain monoamines. , 1962, Acta physiologica Scandinavica. Supplementum.

[141]  J. Changeux,et al.  The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. , 1961, Cold Spring Harbor symposia on quantitative biology.