A computer scientist point of view on Hilbert's differential theorem of zeros

What is a solution of a system of polynomial differential equations ? This paper provides an original presentation of well-known theorems, with a computer scientist flavor, relying on an improved normal form algorithm.

[1]  Maurice Janet Les systémes d'équations aux derivées partielles , 1911 .

[2]  J. Ritt Partial differential algebra , 1950 .

[3]  A. Seidenberg,et al.  SOME BASIC THEOREMS IN DIFFERENTIAL ALGEBRA (CHARACTERISTIC p, ARBITRARY) , 1952 .

[4]  A. Seidenberg Abstract differential algebra and the analytic case. II , 1958 .

[5]  A. Seidenberg An elimination theory for differential algebra , 1959 .

[6]  L. Lipshitz,et al.  Power series solutions of algebraic differential equations , 1984 .

[7]  吴文俊 ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY , 1989 .

[8]  François Boulier,et al.  Étude et implantation de quelques algorithmes en algèbre différentielle. (Study and implementation of some algorithms in differential algebra) , 1994 .

[9]  Marc Moreno Maza,et al.  Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.

[10]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[11]  Gregory J. Reid,et al.  Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.

[12]  Ariane Peladan Germa Tests effectifs de nullite dans des extensions d'anneaux differentiels , 1997 .

[13]  G. Carrà Ferro,et al.  Differential Gröbner bases in one variable and in the partial case , 1997 .

[14]  Sally Morrison The Differential Ideal [ P ] : M ∞ , 1999 .

[15]  Gregory J. Reid,et al.  Existence and uniqueness theorems for formal power series solutions of analytic differential systems , 1999, ISSAC '99.

[16]  Liu Ziming COHERENT, REGULAR AND SIMPLE SYSTEMS IN ZERO DECOMPOSITIONS OF PARTIAL DIFFERENTIAL SYSTEMS , 1999 .

[17]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[18]  François Lemaire,et al.  Computing canonical representatives of regular differential ideals , 2000, ISSAC.

[19]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[20]  Céline Noiret Utilisation du calcul formel pour l'identifiabilité de modèles paramètriques et nouveaux algorithmes en estimation de paramètres , 2000 .

[21]  Hamid Maarouf,et al.  Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..

[22]  G. Reid,et al.  Differential Elimination–Completion Algorithms for DAE and PDAE , 2001 .

[23]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[24]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems , 2001, SNSC.

[25]  William Y. Sit THE RITT–KOLCHIN THEORY FOR DIFFERENTIAL POLYNOMIALS , 2002 .

[26]  François Lemaire Contribution à l'algorithmique en algèbre différentielle , 2002 .

[27]  Ju. V. Matijasevic,et al.  ENUMERABLE SETS ARE DIOPHANTINE , 2003 .

[28]  E. Hubert,et al.  Computing power series solutions of a nonlinear PDE system , 2003, ISSAC '03.

[29]  François Lemaire An orderly linear PDE system with analytic initial conditions with a non-analytic solution , 2003, J. Symb. Comput..

[30]  Dongming Wang Elimination Practice - Software Tools and Applications , 2004 .

[31]  Evelyne Hubert,et al.  Differential Algebra for Derivations with Nontrivial Commutation Rules , 2005 .

[32]  François Boulier,et al.  Differential Elimination and Biological Modelling , 2006 .

[33]  François Boulier,et al.  Réécriture algébrique dans les systèmes d'équations différentielles polynomiales en vue d'applications dans les Sciences du Vivant , 2006 .

[34]  M. M. Maza,et al.  Well known theorems on triangular systems and the D5 principle , 2006 .

[35]  Wu Wen-tsun ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY , 2008 .

[36]  François Boulier,et al.  Computing representations for radicals of finitely generated differential ideals , 2009, Applicable Algebra in Engineering, Communication and Computing.