Process synthesis for addressing the sustainable energy systems and environmental issues

Diminishing petroleum reserves and oscillations of the global petroleum market, together with the influence on the environment in terms of greenhouse gas emissions have accelerated the needs to explore renewable feedstocks and to seek novel sustainable production systems. Process synthesis, the core of process systems engineering, can be predicted to be the powerful tool to construct an environmental-friendly, cost-effective sustainable energy system. Following the brief descriptions of the main methodologies for process synthesis, the present article reviews current activities on the optimal synthesis of biorenewables conversion processes, polygeneration processes, as well as carbon capture processes. Set in the context of exist achievements and future energy and environment requirements, we further elucidate the potential research vistas on optimal synthesis of novel energy systems, specifically, (a) novel biorenewable conversion process; (b) innovative materials-based carbon capture process; (c) solar/wind driven energy conversion system; (d) integrated biorenewable conversion process for the production of chemicals. Finally, challenges about the above aspects are concisely discussed. © 2012 American Institute of Chemical Engineers AIChE J, 2012

[1]  Wolfgang Marquardt,et al.  Conceptual Design of a Butyl-levulinate Reactive Distillation Process by Incremental Refinement , 2011 .

[2]  Mark A. White,et al.  Environmental life cycle comparison of algae to other bioenergy feedstocks. , 2010, Environmental science & technology.

[3]  Ignacio E. Grossmann,et al.  Energy, water and process technologies integration for the simultaneous production of ethanol and food from the entire corn plant , 2011, Comput. Chem. Eng..

[4]  Wei Yuan,et al.  Optimal biorefinery product allocation by combining process and economic modeling , 2008 .

[5]  Kurt Zenz House,et al.  Permanent carbon dioxide storage in deep-sea sediments , 2006, Proceedings of the National Academy of Sciences.

[6]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[7]  Eric D. Larson,et al.  Making Fischer-Tropsch fuels and electricity from coal and biomass: Performance and cost analysis , 2011 .

[8]  Efstratios N. Pistikopoulos,et al.  A Multi-Objective Optimization Approach to Polygeneration Energy Systems Design , 2010 .

[9]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Efstratios N. Pistikopoulos,et al.  Environmental impact minimization through material substitution: a multi-objective optimization approach , 2004 .

[11]  Ignacio E. Grossmann,et al.  Simultaneous Optimization and Heat Integration for Biodiesel Production from Cooking Oil and Algae , 2012 .

[12]  F. Maréchal,et al.  Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass , 2009 .

[13]  I. Grossmann,et al.  A mixed-integer nonlinear programming algorithm for process systems synthesis , 1986 .

[14]  François Maréchal,et al.  Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Thermo-economic process modelling and integration , 2011 .

[15]  Prodromos Daoutidis,et al.  Continuous production of 5-hydroxymethylfurfural from fructose: a design case study , 2010 .

[16]  Efstratios N. Pistikopoulos,et al.  Advances in Energy Systems Engineering , 2011 .

[17]  James A. Dumesic,et al.  Catalytic Production of Liquid Fuels from Biomass‐Derived Oxygenated Hydrocarbons: Catalytic Coupling at Multiple Length Scales , 2009 .

[18]  James M. Douglas,et al.  A hierarchical decision procedure for process synthesis , 1985 .

[19]  Antonio Flores-Tlacuahuac,et al.  Simultaneous Optimal Design of an Extractive Column and Ionic Liquid for the Separation of Bioethanol–Water Mixtures , 2012 .

[20]  François Maréchal,et al.  Thermo-economic optimisation of the polygeneration of synthetic natural gas (SNG), power and heat from lignocellulosic biomass by gasification and methanation , 2012 .

[21]  Gonzalo Guillén-Gosálbez,et al.  Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes , 2010, Comput. Chem. Eng..

[22]  Matthew J. Realff,et al.  Design of biomass processing network for biofuel production using an MILP model , 2011 .

[23]  Thomas A. Adams,et al.  Optimal Design and Operation of Static Energy Polygeneration Systems , 2011 .

[24]  Wolfgang Marquardt,et al.  Reaction network flux analysis: Optimization‐based evaluation of reaction pathways for biorenewables processing , 2012 .

[25]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[26]  I. Grossmann,et al.  Logic-based MINLP algorithms for the optimal synthesis of process networks , 1996 .

[27]  Thomas A. Adams,et al.  High‐efficiency power production from coal with carbon capture , 2010 .

[28]  Xiao-Ning Li,et al.  Conceptual process synthesis: past and current trends , 2004 .

[29]  Prodromos Daoutidis,et al.  Biomass to chemicals: Design of an extractive-reaction process for the production of 5-hydroxymethylfurfural , 2012, Comput. Chem. Eng..

[30]  Xiangping Zhang,et al.  Concentrating-solar biomass gasification process for a 3rd generation biofuel. , 2009, Environmental science & technology.

[31]  Hartmut Michel,et al.  Editorial: the nonsense of biofuels. , 2012, Angewandte Chemie.

[32]  Dong Wang,et al.  Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels , 2010, Science.

[33]  Ignacio E. Grossmann,et al.  Research challenges in process systems engineering , 2000 .

[34]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[35]  Joseph J. Bozell,et al.  Connecting Biomass and Petroleum Processing with a Chemical Bridge , 2010, Science.

[36]  Christodoulos A. Floudas,et al.  Optimal energy supply network determination and life cycle analysis for hybrid coal, biomass, and natural gas to liquid (CBGTL) plants using carbon-based hydrogen production , 2011, Comput. Chem. Eng..

[37]  Rakesh Agrawal,et al.  Hydrogen Economy - An Opportunity for Chemical Engineers? , 2005 .

[38]  Wolfgang Marquardt,et al.  A Framework for the Systematic Design of Hybrid Separation Processes * * Supported by the Deutsche F , 2008 .

[39]  Thomas A. Adams,et al.  Decomposition strategy for the global optimization of flexible energy polygeneration systems , 2012 .

[40]  Aidong Yang,et al.  On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries , 2010, Comput. Chem. Eng..

[41]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[42]  Rafiqul Gani,et al.  Design of an Optimal Biorefinery , 2011 .

[43]  Ignacio E. Grossmann,et al.  Global superstructure optimization for the design of integrated process water networks , 2011 .

[44]  Fengqi You,et al.  Design under uncertainty of hydrocarbon biorefinery supply chains: Multiobjective stochastic programming models, decomposition algorithm, and a Comparison between CVaR and downside risk , 2012 .

[45]  Wolfgang Marquardt,et al.  Benchmarking of next‐generation biofuels from a process perspective , 2012 .

[46]  Thomas A. Adams,et al.  Optimal Design and Operation of Flexible Energy Polygeneration Systems , 2011 .

[47]  Dimitrios I. Gerogiorgis,et al.  Modeling and optimization of polygeneration energy systems , 2007 .

[48]  Gonzalo Guillén-Gosálbez,et al.  A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model , 2010, Comput. Chem. Eng..

[49]  Peter N. R. Vennestrøm,et al.  Beyond petrochemicals: the renewable chemicals industry. , 2011, Angewandte Chemie.

[50]  Karsten-Ulrich Klatt,et al.  Perspectives for process systems engineering - Personal views from academia and industry , 2009, Comput. Chem. Eng..

[51]  Denny K. S. Ng,et al.  Multiple-cascade automated targeting for synthesis of a gasification-based integrated biorefinery. , 2012 .

[52]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[53]  Dionisios G. Vlachos,et al.  The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis , 2010 .

[54]  Jeffrey J. Siirola,et al.  Process synthesis prospective , 2004, Comput. Chem. Eng..

[55]  Martina Peters,et al.  Chemical technologies for exploiting and recycling carbon dioxide into the value chain. , 2011, ChemSusChem.

[56]  Wolfgang Marquardt,et al.  Towards an integrated design of biofuels and their production pathways , 2010, Comput. Chem. Eng..

[57]  Christodoulos A. Floudas,et al.  Global optimization of a MINLP process synthesis model for thermochemical based conversion of hybrid coal, biomass, and natural gas to liquid fuels , 2012, Comput. Chem. Eng..

[58]  Yuriy Román‐Leshkov,et al.  Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates , 2007, Nature.

[59]  G. Stephanopoulos Challenges in Engineering Microbes for Biofuels Production , 2007, Science.

[60]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[61]  Jonathan M Cullen,et al.  Options for achieving a 50% cut in industrial carbon emissions by 2050. , 2010, Environmental science & technology.

[62]  Christodoulos A. Floudas,et al.  Automatic synthesis of optimum heat exchanger network configurations , 1986 .

[63]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[64]  Paul J. Dauenhauer,et al.  Chemical engineering: Hybrid routes to biofuels , 2007, Nature.

[65]  Gonzalo Guillén-Gosálbez,et al.  Optimal design and planning of sustainable chemical supply chains under uncertainty , 2009 .

[66]  Efstratios N. Pistikopoulos,et al.  Optimal solvent design for environmental impact minimization , 1998 .

[67]  F. You,et al.  Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis , 2012 .

[68]  Thomas A. Adams,et al.  Combining coal gasification and natural gas reforming for efficient polygeneration , 2011 .

[69]  L. Biegler,et al.  Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture , 2010 .

[70]  I. Grossmann,et al.  Energy optimization of bioethanol production via hydrolysis of switchgrass , 2012 .

[71]  Huajiang Huang,et al.  A review of separation technologies in current and future biorefineries , 2008 .

[72]  P. Gallezot,et al.  Conversion of biomass to selected chemical products. , 2012, Chemical Society reviews.

[73]  I. Grossmann,et al.  Optimization of Energy and Water Consumption in Corn-Based Ethanol Plants , 2010 .

[74]  Nilay Shah,et al.  Spatially Explicit Static Model for the Strategic Design of Future Bioethanol Production Systems. 2. Multi-Objective Environmental Optimization , 2009 .

[75]  Theodoros Damartzis,et al.  Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review , 2011 .

[76]  G. Huber,et al.  Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils , 2010, Science.

[77]  Avelino Corma,et al.  Synergies between bio- and oil refineries for the production of fuels from biomass. , 2007, Angewandte Chemie.

[78]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[79]  Rakesh Agrawal,et al.  Solar energy to biofuels. , 2010, Annual review of chemical and biomolecular engineering.

[80]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[81]  Arthur Westerberg,et al.  A retrospective on design and process synthesis , 2004, Comput. Chem. Eng..

[82]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[83]  En Sup Yoon,et al.  Development of Dimethyl Ether Production Process Based on Biomass Gasification by Using Mixed-Integer Nonlinear Programming , 2010 .

[84]  Brendon Hausberger,et al.  Systems approach to reducing energy usage and carbon dioxide emissions , 2009 .

[85]  François Maréchal,et al.  Methodology for the optimal thermo-economic, multi-objective design of thermochemical fuel production from biomass , 2009, Comput. Chem. Eng..

[86]  D. Macfarlane,et al.  Ionic liquids in biomass processing. , 2010, Topics in current chemistry.

[87]  A. Horvath,et al.  Grand challenges for life-cycle assessment of biofuels. , 2011, Environmental science & technology.

[88]  I. Grossmann,et al.  Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass , 2011 .

[89]  Rafiqul Gani,et al.  State‐of‐the‐art and progress in the optimization‐based simultaneous design and control for chemical processes , 2012 .

[90]  Krist V. Gernaey,et al.  A model-based methodology for simultaneous design and control of a bioethanol production process , 2010, Comput. Chem. Eng..

[91]  Antonio Flores-Tlacuahuac,et al.  Optimal Molecular Design of Ionic Liquids for High-Purity Bioethanol Production , 2011 .

[92]  Dieter Boer,et al.  Integrated gasification combined cycle (IGCC) process simulation and optimization , 2010, Comput. Chem. Eng..

[93]  Alan W. Weimer,et al.  Solar-driven biochar gasification in a particle-flow reactor , 2009 .

[94]  Ignacio E. Grossmann,et al.  Energy optimization for the design of corn‐based ethanol plants , 2008 .

[95]  Christodoulos A. Floudas,et al.  Simultaneous process synthesis, heat, power, and water integration of thermochemical hybrid biomass, coal, and natural gas facilities , 2012, Comput. Chem. Eng..

[96]  Wolfgang Marquardt,et al.  The biorenewables opportunity ‐ toward next generation process and product systems , 2010 .

[97]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[98]  Thomas A. Adams,et al.  Combining coal gasification, natural gas reforming, and solid oxide fuel cells for efficient polygen , 2011 .

[99]  Arthur W. Westerberg,et al.  A review of process synthesis , 1981 .

[100]  Efstratios N. Pistikopoulos,et al.  An improved decomposition algorithm for optimization under uncertainty , 2000 .

[101]  Dharik S. Mallapragada,et al.  Chemical engineering in a solar energy‐driven sustainable future , 2010 .

[102]  Eric D. Larson,et al.  Synthetic fuel production by indirect coal liquefaction , 2003 .

[103]  A. Steinfeld,et al.  Syngas production by simultaneous splitting of H2O and CO2via ceria redox reactions in a high-temperature solar reactor , 2012 .

[104]  Rafiqul Gani,et al.  Optimal design of a multi-product biorefinery system , 2011, Comput. Chem. Eng..

[105]  Stephen E. Zitney,et al.  A Superstructure-Based Optimal Synthesis of PSA Cycles for Post-Combustion CO2 Capture , 2009 .

[106]  Antonio Flores-Tlacuahuac,et al.  Optimal Synthesis of a High Purity Bioethanol Distillation Column Using Ionic Liquids , 2011 .

[107]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[108]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[109]  Carlos A Cardona,et al.  Fuel ethanol production: process design trends and integration opportunities. , 2007, Bioresource technology.

[110]  Gintaras V. Reklaitis,et al.  Process systems engineering: From Solvay to modern bio- and nanotechnology.: A history of development, successes and prospects for the future , 2011 .

[111]  Sebastian Recker,et al.  Bio-based Value Chains of the Future - An Opportunity for Process Systems Engineering , 2012 .

[112]  J. Melero,et al.  Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges , 2012 .

[113]  Christodoulos A. Floudas,et al.  Nationwide energy supply chain analysis for hybrid feedstock processes with significant CO2 emissions reduction , 2012 .

[114]  I. Grossmann,et al.  New algorithms for nonlinear generalized disjunctive programming , 2000 .

[115]  Lazaros G. Papageorgiou,et al.  Optimization-Based Approaches for Bioethanol Supply Chains , 2011 .

[116]  Richard C. Baliban,et al.  Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 2: Simultaneous Heat and Power Integration , 2010 .

[117]  F. Maréchal,et al.  Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Process optimisation for selected substrates , 2011 .

[118]  L. Lynd,et al.  How biotech can transform biofuels , 2008, Nature Biotechnology.

[119]  Efstratios N. Pistikopoulos,et al.  Environmentally conscious long-range planning and design of supply chain networks , 2005 .

[120]  J. Dumesic,et al.  Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels , 2011 .

[121]  Navneet R. Singh,et al.  Synergistic routes to liquid fuel for a petroleum‐deprived future , 2009 .

[122]  Ignacio E. Grossmann,et al.  Energy optimization of hydrogen production from lignocellulosic biomass , 2011, Comput. Chem. Eng..

[123]  James A. Dumesic,et al.  Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides , 2007 .

[124]  Wei Qi,et al.  Conceptual process design: A systematic method to evaluate and develop renewable energy technologies , 2011 .

[125]  Ignacio E. Grossmann,et al.  Energy optimization of bioethanol production via gasification of switchgrass , 2011 .

[126]  W. Marquardt,et al.  Efficient Optimization-Based Design of Distillation Columns for Homogenous Azeotropic Mixtures , 2006 .

[127]  Carlos A. Henao,et al.  Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid , 2011 .

[128]  Efstratios N. Pistikopoulos,et al.  Decomposition Based Stochastic Programming Approach for Polygeneration Energy Systems Design under Uncertainty , 2010 .

[129]  Zdravko Kravanja,et al.  Challenges in sustainable integrated process synthesis and the capabilities of an MINLP process synthesizer MipSyn , 2010, Comput. Chem. Eng..

[130]  Gonzalo Guillén-Gosálbez,et al.  A novel MILP-based objective reduction method for multi-objective optimization: Application to environmental problems , 2011, Comput. Chem. Eng..

[131]  François Maréchal,et al.  Combined mass and energy integration in process design at the example of membrane-based gas separation systems , 2010, Comput. Chem. Eng..

[132]  Christodoulos A. Floudas,et al.  Heat exchanger network synthesis without decomposition , 1991 .

[133]  Mahmoud M. El-Halwagi,et al.  A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries , 2011, Comput. Chem. Eng..

[134]  Akshay D. Patel,et al.  Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes , 2011 .

[135]  Christos T. Maravelias,et al.  Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation , 2012 .

[136]  F. Maréchal,et al.  Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis , 2010 .

[137]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[138]  Rakesh Agrawal,et al.  Sustainable fuel for the transportation sector , 2007, Proceedings of the National Academy of Sciences.

[139]  N. Shah,et al.  Spatially Explicit Static Model for the Strategic Design of Future Bioethanol Production Systems. 1. Cost Minimization , 2009 .

[140]  Mahmoud M. El-Halwagi,et al.  A Disjunctive Programming Formulation for the Optimal Design of Biorefinery Configurations , 2012 .

[141]  R. Ben Aim,et al.  The influence of suspended particle size distribution in deep-bed filtration , 1985 .

[142]  Gonzalo Guillén-Gosálbez,et al.  Application of life cycle assessment to the structural optimization of process flowsheets , 2007 .

[143]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[144]  Faizan Ahmad,et al.  Process simulation and optimal design of membrane separation system for CO2 capture from natural gas , 2012, Comput. Chem. Eng..

[145]  Gürkan Sin,et al.  Integrated business and engineering framework for synthesis and design of enterprise-wide processing networks , 2012, Comput. Chem. Eng..

[146]  Russell W Stratton,et al.  Environmental performance of algal biofuel technology options. , 2012, Environmental science & technology.

[147]  Adisa Azapagic,et al.  The application of life cycle assessment to process optimisation , 1999 .

[148]  I. Grossmann,et al.  Optimization of Water Consumption in Second Generation Bioethanol Plants , 2011 .

[149]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[150]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[151]  John White,et al.  Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes , 2012, Comput. Chem. Eng..

[152]  G. Huber,et al.  Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. , 2007, Angewandte Chemie.

[153]  Wolfgang Marquardt,et al.  Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process , 2011, Comput. Chem. Eng..

[154]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[155]  G. Centi,et al.  Carbon dioxide recycling: emerging large-scale technologies with industrial potential. , 2011, ChemSusChem.

[156]  Mahmoud M. El-Halwagi,et al.  Process synthesis and optimization of biorefinery configurations , 2012 .

[157]  Giulia Fiorese,et al.  Co-production of decarbonized synfuels and electricity from coal + biomass with CO2 capture and storage: an Illinois case study , 2010 .

[158]  Enrico Drioli,et al.  Process intensification strategies and membrane engineering , 2012 .

[159]  R. Gross,et al.  Chemicals from Biomass , 2007, Science.

[160]  Christodoulos A. Floudas,et al.  Hybrid and single feedstock energy processes for liquid transportation fuels: A critical review , 2012, Comput. Chem. Eng..

[161]  Tristan R. Brown,et al.  Techno‐economic analysis of biobased chemicals production via integrated catalytic processing , 2012 .

[162]  Adisa Azapagic,et al.  Life cycle Assessment and its Application to Process Selection, Design and Optimisation , 1999 .

[163]  J. Regalbuto Cellulosic Biofuels—Got Gasoline? , 2009, Science.

[164]  Ignacio E. Grossmann,et al.  Challenges in the new millennium: product discovery and design, enterprise and supply chain optimization, global life cycle assessment , 2004, Comput. Chem. Eng..

[165]  Juan Carlos Serrano-Ruiz,et al.  Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes , 2008, Science.

[166]  François Maréchal,et al.  Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass , 2011, Comput. Chem. Eng..

[167]  Prodromos Daoutidis,et al.  Rule-Based Generation of Thermochemical Routes to Biomass Conversion , 2010 .

[168]  Jinsong Zhao,et al.  An overview on controllability analysis of chemical processes , 2011 .

[169]  Christos T. Maravelias,et al.  Fuel production from CO2 using solar-thermal energy: system level analysis , 2012 .

[170]  Efstratios N. Pistikopoulos,et al.  Uncertainty in process design and operations , 1995 .

[171]  Liang-Shih Fan,et al.  Clean coal conversion processes – progress and challenges , 2008 .

[172]  Efstratios N. Pistikopoulos,et al.  A mixed-integer optimization approach for polygeneration energy systems design , 2009, Comput. Chem. Eng..

[173]  Denny K. S. Ng,et al.  Automated targeting for the synthesis of an integrated biorefinery , 2010 .

[174]  Christodoulos A. Floudas,et al.  Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility , 2011, Comput. Chem. Eng..

[175]  Hans Ivar Skjelbred,et al.  Linear mixed-integer models for biomass supply chains with transport, storage and processing , 2010 .

[176]  J. Murphy,et al.  Mechanism and challenges in commercialisation of algal biofuels. , 2011, Bioresource technology.

[177]  Richard C. Baliban,et al.  Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis , 2010 .

[178]  Alan W. Weimer,et al.  Solar‐thermal production of renewable hydrogen , 2009 .