Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer.

We describe a sensitive electrochemical immunosensor that takes advantage of the low background current of an indium tin oxide electrode, the good electrocatalytic properties of multi-walled carbon nanotubes, and the low biofouling properties of poly(ethylene glycol)-silane copolymer.

[1]  Jeong-O Lee,et al.  Detection of tumor markers using single-walled carbon nanotube field effect transistors. , 2006, Journal of nanoscience and nanotechnology.

[2]  I-Ming Hsing,et al.  A DNA biochip for on-the-spot multiplexed pathogen identification , 2006, Nucleic acids research.

[3]  Sivaram Arepalli,et al.  A Special Issue : Second Workshop on SWCNT Growth Mechanisms: Organized by NASA-JSC and Rice University (Selected Refereed Papers) , 2006 .

[4]  Marek Trojanowicz,et al.  Analytical applications of carbon nanotubes : a review , 2006 .

[5]  D. Leonard,et al.  Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection. , 2006, Analytical chemistry.

[6]  M. Pumera,et al.  New materials for electrochemical sensing VI: Carbon nanotubes , 2005 .

[7]  Phillip B. Messersmith,et al.  Bioinspired antifouling polymers , 2005 .

[8]  G. Swain,et al.  Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes , 2005 .

[9]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[10]  Su-Moon Park,et al.  Programmed potential sweep voltammetry for lower detection limits. , 2005, Analytical chemistry.

[11]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.

[12]  Richard G Compton,et al.  Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. , 2005, Chemical communications.

[13]  Jun Li,et al.  Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis , 2005 .

[14]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[15]  Shimin Zhang,et al.  Functionalized carbon nanotubes containing isocyanate groups , 2004 .

[16]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  W. Heineman,et al.  Electrochemical and optical evaluation of noble metal– and carbon–ITO hybrid optically transparent electrodes , 2004 .

[18]  David A Russell,et al.  Electrochemical control of protein monolayers at indium tin oxide surfaces for the reagentless optical biosensing of nitric oxide. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  G. Luo,et al.  Carbon nanotubes as separation carrier in capillary electrophoresis , 2003, Electrophoresis.

[20]  Robert Langer,et al.  Construction of Nonbiofouling Surfaces by Polymeric Self-Assembled Monolayers , 2003 .

[21]  V. Mirsky New electroanalytical applications of self-assembled monolayers , 2002 .

[22]  I. Willner,et al.  Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen--antibody or oligonucleotide--DNA sensing processes by the precipitation of an insoluble product on electrodes. , 2001, Analytical chemistry.

[23]  F. Céspedes,et al.  New materials for electrochemical sensing. II. Rigid carbon-polymer biocomposites , 2000 .

[24]  A. Asanov,et al.  Regenerable biosensor platform: a total internal reflection fluorescence cell with electrochemical control. , 1998, Analytical chemistry.

[25]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.